- -

Cosmic Background Bose Condensation (CBBC)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cosmic Background Bose Condensation (CBBC)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alfonso-Faus, Antonio es_ES
dc.contributor.author Fullana Alfonso, Màrius Josep es_ES
dc.date.accessioned 2014-04-03T08:14:25Z
dc.date.issued 2013-05-30
dc.identifier.issn 0004-640X
dc.identifier.uri http://hdl.handle.net/10251/36809
dc.description.abstract Degeneracy effects for bosons are more important for smaller particle mass, smaller temperature and higher number density. Bose condensation requires that particles be in the same lowest energy quantum state. We propose a cosmic background Bose condensation, present everywhere, with its particles having the lowest quantum energy state, A c/lambda, with lambda about the size of the visible universe, and therefore unlocalized. This we identify with the quantum of the self gravitational potential energy of any particle, and with the bit of information of minimum energy. The entropy of the universe (similar to 10(122) bits) has the highest number density (similar to 10(36) bits/cm(3)) of particles inside the visible universe, the smallest mass, similar to 10(-66) g, and the smallest temperature, similar to 10(-29) K. Therefore it is the best candidate for a Cosmic Background Bose Condensation (CBBC), a completely calmed fluid, with no viscosity, in a superfluidity state, and possibly responsible for the expansion of the universe. es_ES
dc.format.extent 4 es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Astrophysics and Space Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bose condensation es_ES
dc.subject Entropy es_ES
dc.subject Cosmology es_ES
dc.subject Gravitation es_ES
dc.subject Universe es_ES
dc.subject Hawking temperature es_ES
dc.subject Unruh temperature es_ES
dc.subject Quantum of mass. es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Cosmic Background Bose Condensation (CBBC) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10509-013-1500-8
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Alfonso-Faus, A.; Fullana Alfonso, MJ. (2013). Cosmic Background Bose Condensation (CBBC). Astrophysics and Space Science. 347(1):193-196. doi:10.1007/s10509-013-1500-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://link.springer.com/article/10.1007%2Fs10509-013-1500-8 es_ES
dc.description.upvformatpinicio 193 es_ES
dc.description.upvformatpfin 196 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 347 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 254731
dc.description.references Alfonso-Faus, A.: Universality of the self gravitational potential energy of any fundamental particle. Astrophys. Space Sci. 337, 363 (2010a) es_ES
dc.description.references Alfonso-Faus, A.: The case for the Universe to be a quantum black hole. Astrophys. Space Sci. 325, 113 (2010b) es_ES
dc.description.references Alfonso-Faus, A.: Galaxies: kinematics as a proof of the existence of a universal field of minimum acceleration. arXiv:0708.0308 (2010c, preprint) es_ES
dc.description.references Alfonso-Faus, A.: Quantum gravity and information theories linked by the physical properties of the bit. arXiv:1105.3143 (2011, preprint) es_ES
dc.description.references Anderson, J.D., et al.: Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration. Phys. Rev. Lett. 81, 2858 (1998) es_ES
dc.description.references Bekenstein, J.D.: Phys. Rev. D 23(2), 287 (1981) es_ES
dc.description.references Bérut, A., et al.: Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187 (2012) es_ES
dc.description.references Drees, M., Chung-Lin, S.: Theoretical interpretation of experimental data from direct dark matter detection. J. Cosmol. Astropart. Phys. 0706, 011 (2007) es_ES
dc.description.references Eisberg, R., Resnick, R.: Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, 2nd edn. Wiley, New York (1985) es_ES
dc.description.references Funo, K., Watanabe, Y., Ueda, M.: Thermodynamic work gain from entanglement. arXiv:1207.6872 [quant-ph] (2012, preprint) es_ES
dc.description.references Hawking, S.W.: Black hole explosions? Nature 248, 30 (1974) es_ES
dc.description.references Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183 (1961) es_ES
dc.description.references Landauer, R.: Dissipation and noise immunity in computation and communication. Nature 335, 779 (1988) es_ES
dc.description.references Lloyd, S.: Computational capacity of the universe. Phys. Rev. Lett. 88, 237901 (2002) es_ES
dc.description.references Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, Reading (1973), p. 466 (“Why the energy of the gravitational field cannot be localized”) es_ES
dc.description.references Scarpa, R., Falomo, R.: Testing Newtonian gravity in the low acceleration regime with globular clusters: the case of omega Centauri revisited. Astron. Astrophys. 523, A43 (2010) es_ES
dc.description.references Sivaram, C.: Cosmological and quantum constraint on particle masses. Am. J. Phys. 50, 279 (1982) es_ES
dc.description.references Susskind, L.: The World as a hologram. J. Math. Phys. 36, 6377 (1995) es_ES
dc.description.references ’t Hooft, G.: Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026 (1993, preprint) es_ES
dc.description.references Toyabe, S., et al.: Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys. 6, 988 (2010) es_ES
dc.description.references Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D, Part. Fields 14(4), 870 (1976) es_ES
dc.description.references Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity p. 619. Wiley, New York (1972) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem