Mostrar el registro sencillo del ítem
dc.contributor.author | Alfonso-Faus, Antonio | es_ES |
dc.contributor.author | Fullana Alfonso, Màrius Josep | es_ES |
dc.date.accessioned | 2014-04-03T08:14:25Z | |
dc.date.issued | 2013-05-30 | |
dc.identifier.issn | 0004-640X | |
dc.identifier.uri | http://hdl.handle.net/10251/36809 | |
dc.description.abstract | Degeneracy effects for bosons are more important for smaller particle mass, smaller temperature and higher number density. Bose condensation requires that particles be in the same lowest energy quantum state. We propose a cosmic background Bose condensation, present everywhere, with its particles having the lowest quantum energy state, A c/lambda, with lambda about the size of the visible universe, and therefore unlocalized. This we identify with the quantum of the self gravitational potential energy of any particle, and with the bit of information of minimum energy. The entropy of the universe (similar to 10(122) bits) has the highest number density (similar to 10(36) bits/cm(3)) of particles inside the visible universe, the smallest mass, similar to 10(-66) g, and the smallest temperature, similar to 10(-29) K. Therefore it is the best candidate for a Cosmic Background Bose Condensation (CBBC), a completely calmed fluid, with no viscosity, in a superfluidity state, and possibly responsible for the expansion of the universe. | es_ES |
dc.format.extent | 4 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Astrophysics and Space Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bose condensation | es_ES |
dc.subject | Entropy | es_ES |
dc.subject | Cosmology | es_ES |
dc.subject | Gravitation | es_ES |
dc.subject | Universe | es_ES |
dc.subject | Hawking temperature | es_ES |
dc.subject | Unruh temperature | es_ES |
dc.subject | Quantum of mass. | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Cosmic Background Bose Condensation (CBBC) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10509-013-1500-8 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Alfonso-Faus, A.; Fullana Alfonso, MJ. (2013). Cosmic Background Bose Condensation (CBBC). Astrophysics and Space Science. 347(1):193-196. doi:10.1007/s10509-013-1500-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://link.springer.com/article/10.1007%2Fs10509-013-1500-8 | es_ES |
dc.description.upvformatpinicio | 193 | es_ES |
dc.description.upvformatpfin | 196 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 347 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 254731 | |
dc.description.references | Alfonso-Faus, A.: Universality of the self gravitational potential energy of any fundamental particle. Astrophys. Space Sci. 337, 363 (2010a) | es_ES |
dc.description.references | Alfonso-Faus, A.: The case for the Universe to be a quantum black hole. Astrophys. Space Sci. 325, 113 (2010b) | es_ES |
dc.description.references | Alfonso-Faus, A.: Galaxies: kinematics as a proof of the existence of a universal field of minimum acceleration. arXiv:0708.0308 (2010c, preprint) | es_ES |
dc.description.references | Alfonso-Faus, A.: Quantum gravity and information theories linked by the physical properties of the bit. arXiv:1105.3143 (2011, preprint) | es_ES |
dc.description.references | Anderson, J.D., et al.: Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration. Phys. Rev. Lett. 81, 2858 (1998) | es_ES |
dc.description.references | Bekenstein, J.D.: Phys. Rev. D 23(2), 287 (1981) | es_ES |
dc.description.references | Bérut, A., et al.: Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187 (2012) | es_ES |
dc.description.references | Drees, M., Chung-Lin, S.: Theoretical interpretation of experimental data from direct dark matter detection. J. Cosmol. Astropart. Phys. 0706, 011 (2007) | es_ES |
dc.description.references | Eisberg, R., Resnick, R.: Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, 2nd edn. Wiley, New York (1985) | es_ES |
dc.description.references | Funo, K., Watanabe, Y., Ueda, M.: Thermodynamic work gain from entanglement. arXiv:1207.6872 [quant-ph] (2012, preprint) | es_ES |
dc.description.references | Hawking, S.W.: Black hole explosions? Nature 248, 30 (1974) | es_ES |
dc.description.references | Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183 (1961) | es_ES |
dc.description.references | Landauer, R.: Dissipation and noise immunity in computation and communication. Nature 335, 779 (1988) | es_ES |
dc.description.references | Lloyd, S.: Computational capacity of the universe. Phys. Rev. Lett. 88, 237901 (2002) | es_ES |
dc.description.references | Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, Reading (1973), p. 466 (“Why the energy of the gravitational field cannot be localized”) | es_ES |
dc.description.references | Scarpa, R., Falomo, R.: Testing Newtonian gravity in the low acceleration regime with globular clusters: the case of omega Centauri revisited. Astron. Astrophys. 523, A43 (2010) | es_ES |
dc.description.references | Sivaram, C.: Cosmological and quantum constraint on particle masses. Am. J. Phys. 50, 279 (1982) | es_ES |
dc.description.references | Susskind, L.: The World as a hologram. J. Math. Phys. 36, 6377 (1995) | es_ES |
dc.description.references | ’t Hooft, G.: Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026 (1993, preprint) | es_ES |
dc.description.references | Toyabe, S., et al.: Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys. 6, 988 (2010) | es_ES |
dc.description.references | Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D, Part. Fields 14(4), 870 (1976) | es_ES |
dc.description.references | Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity p. 619. Wiley, New York (1972) | es_ES |