- -

Non-monotonic cell differentiation pattern on extreme wettability gradients

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-monotonic cell differentiation pattern on extreme wettability gradients

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cantini, Marco es_ES
dc.contributor.author Sousa, Maria es_ES
dc.contributor.author Moratal Pérez, David es_ES
dc.contributor.author Mano, Joao F. es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.date.accessioned 2014-04-04T15:47:58Z
dc.date.issued 2013-02
dc.identifier.issn 2047-4830
dc.identifier.uri http://hdl.handle.net/10251/36855
dc.description.abstract [EN] In this study, we propose a methodology to obtain a family of biomimetic substrates with a hierarchical rough topography at the micro and nanoscale that span the entire range of wettability, from the superhydrophobic to the superhydrophilic regime, through an Ar-plasma treatment at increasing durations. Moreover, we employ the same approach to produce a superhydrophobic-to- superhydrophilic surface gradient along centimetre-length scale distances within the same sample. We characterize the biological activity of these surfaces in terms of protein adsorption and cell response, using fibronectin, a major component of the extracellular matrix, and C2C12 cells, a myoblast cell line. Fibronectin conformation, assessed via binding of the monoclonal antibody HFN7.1, exhibits a non-monotonic dependence on surface wettability, with higher activity on hydrophilic substrates (WCA = 38.6 ± 8.1°). On the other hand, the exposition of cell-binding epitopes is diminished on the surfaces with extreme wetting properties, the conformation being particularly altered on the superhydrophobic substrate. The assessment of cell response via the myogenic differentiation process reveals that a gradient surface promotes a different response with respect to cells cultured on discrete uniform samples: even though in both cases the same non-monotonic differentiation pattern is found, the differential response to the various wettabilities is enhanced along the gradient while the overall levels of differentiation are diminished. On a gradient surface cells are in fact exposed to a range of continuously changing stimuli that foster cell migration and detain the differentiation process. © 2013 The Royal Society of Chemistry. es_ES
dc.description.sponsorship The support of the Spanish Ministry of Science and Innovation through project MAT2009-14440-C02-01 is acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.
dc.format.extent 11 es_ES
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Biomaterials Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Differential response es_ES
dc.subject Differentiation process es_ES
dc.subject Extracellular matrices es_ES
dc.subject Hydrophilic substrate es_ES
dc.subject Myogenic differentiations es_ES
dc.subject Non-monotonic dependence es_ES
dc.subject Superhydrophilic surface es_ES
dc.subject Wettability gradients es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Non-monotonic cell differentiation pattern on extreme wettability gradients es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1039/C2BM00063F
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-01/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Cantini, M.; Sousa, M.; Moratal Pérez, D.; Mano, JF.; Salmerón Sánchez, M. (2013). Non-monotonic cell differentiation pattern on extreme wettability gradients. Biomaterials Science. 1(2):202-212. https://doi.org/10.1039/C2BM00063F es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c2bm00063f es_ES
dc.description.upvformatpinicio 202 es_ES
dc.description.upvformatpfin 212 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 244487
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Singh, M., Berkland, C., & Detamore, M. S. (2008). Strategies and Applications for Incorporating Physical and Chemical Signal Gradients in Tissue Engineering. Tissue Engineering Part B: Reviews, 14(4), 341-366. doi:10.1089/ten.teb.2008.0304 es_ES
dc.description.references KENNEDY, S., WASHBURN, N., SIMONJR, C., & AMIS, E. (2006). Combinatorial screen of the effect of surface energy on fibronectin-mediated osteoblast adhesion, spreading and proliferation☆. Biomaterials, 27(20), 3817-3824. doi:10.1016/j.biomaterials.2006.02.044 es_ES
dc.description.references Tse, J. R., & Engler, A. J. (2011). Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate. PLoS ONE, 6(1), e15978. doi:10.1371/journal.pone.0015978 es_ES
dc.description.references Kim, M. S., Khang, G., & Lee, H. B. (2008). Gradient polymer surfaces for biomedical applications. Progress in Polymer Science, 33(1), 138-164. doi:10.1016/j.progpolymsci.2007.06.001 es_ES
dc.description.references Zhang, J., & Han, Y. (2008). A Topography/Chemical Composition Gradient Polystyrene Surface:  Toward the Investigation of the Relationship between Surface Wettability and Surface Structure and Chemical Composition. Langmuir, 24(3), 796-801. doi:10.1021/la702567w es_ES
dc.description.references Chaudhury, M. K., & Whitesides, G. M. (1992). How to Make Water Run Uphill. Science, 256(5063), 1539-1541. doi:10.1126/science.256.5063.1539 es_ES
dc.description.references Ruardy, T. G., Schakenraad, J. M., van der Mei, H. C., & Busscher, H. J. (1997). Preparation and characterization of chemical gradient surfaces and their application for the study of cellular interaction phenomena. Surface Science Reports, 29(1), 3-30. doi:10.1016/s0167-5729(97)00008-3 es_ES
dc.description.references Zelzer, M., Majani, R., Bradley, J. W., Rose, F. R. A. J., Davies, M. C., & Alexander, M. R. (2008). Investigation of cell–surface interactions using chemical gradients formed from plasma polymers. Biomaterials, 29(2), 172-184. doi:10.1016/j.biomaterials.2007.09.026 es_ES
dc.description.references Yang, J., Rose, F. R. A. J., Gadegaard, N., & Alexander, M. R. (2009). A High-Throughput Assay of Cell-Surface Interactions using Topographical and Chemical Gradients. Advanced Materials, 21(3), 300-304. doi:10.1002/adma.200801942 es_ES
dc.description.references Song, W., Veiga, D. D., Custódio, C. A., & Mano, J. F. (2009). Bioinspired Degradable Substrates with Extreme Wettability Properties. Advanced Materials, 21(18), 1830-1834. doi:10.1002/adma.200803680 es_ES
dc.description.references Yu, X., Wang, Z., Jiang, Y., & Zhang, X. (2006). Surface Gradient Material:  From Superhydrophobicity to Superhydrophilicity. Langmuir, 22(10), 4483-4486. doi:10.1021/la053133c es_ES
dc.description.references Sun, T., Tan, H., Han, D., Fu, Q., & Jiang, L. (2005). No Platelet Can Adhere—Largely Improved Blood Compatibility on Nanostructured Superhydrophobic Surfaces. Small, 1(10), 959-963. doi:10.1002/smll.200500095 es_ES
dc.description.references Ishizaki, T., Saito, N., & Takai, O. (2010). Correlation of Cell Adhesive Behaviors on Superhydrophobic, Superhydrophilic, and Micropatterned Superhydrophobic/Superhydrophilic Surfaces to Their Surface Chemistry. Langmuir, 26(11), 8147-8154. doi:10.1021/la904447c es_ES
dc.description.references Neto, A. I., Custódio, C. A., Song, W., & Mano, J. F. (2011). High-throughput evaluation of interactions between biomaterials, proteins and cells using patterned superhydrophobic substrates. Soft Matter, 7(9), 4147. doi:10.1039/c1sm05169e es_ES
dc.description.references Oliveira, S. M., Song, W., Alves, N. M., & Mano, J. F. (2011). Chemical modification of bioinspired superhydrophobic polystyrene surfaces to control cell attachment/proliferation. Soft Matter, 7(19), 8932. doi:10.1039/c1sm05943b es_ES
dc.description.references Ballester-Beltrán, J., Rico, P., Moratal, D., Song, W., Mano, J. F., & Salmerón-Sánchez, M. (2011). Role of superhydrophobicity in the biological activity of fibronectin at the cell–material interface. Soft Matter, 7(22), 10803. doi:10.1039/c1sm06102j es_ES
dc.description.references Li, X., Dai, H., Tan, S., Zhang, X., Liu, H., Wang, Y., … Xu, J. (2009). Facile preparation of poly(ethyl α-cyanoacrylate) superhydrophobic and gradient wetting surfaces. Journal of Colloid and Interface Science, 340(1), 93-97. doi:10.1016/j.jcis.2009.08.017 es_ES
dc.description.references Lai, Y.-H., Yang, J.-T., & Shieh, D.-B. (2010). A microchip fabricated with a vapor-diffusion self-assembled-monolayer method to transport droplets across superhydrophobic to hydrophilic surfaces. Lab Chip, 10(4), 499-504. doi:10.1039/b917624a es_ES
dc.description.references García, A. J. (s. f.). Interfaces to Control Cell-Biomaterial Adhesive Interactions. Advances in Polymer Science, 171-190. doi:10.1007/12_071 es_ES
dc.description.references Gumbiner, B. M. (1996). Cell Adhesion: The Molecular Basis of Tissue Architecture and Morphogenesis. Cell, 84(3), 345-357. doi:10.1016/s0092-8674(00)81279-9 es_ES
dc.description.references Werner, C., Pompe, T., & Salchert, K. (2006). Modulating Extracellular Matrix at Interfaces of Polymeric Materials. Advances in Polymer Science, 63-93. doi:10.1007/12_089 es_ES
dc.description.references M. Salmerón-Sánchez and G.Altankov, in Tissue Engineering, ed. D. Eberli, In-Tech, 2010, vol. 1, pp. 77–102 es_ES
dc.description.references Hynes, R. O. (2002). Integrins. Cell, 110(6), 673-687. doi:10.1016/s0092-8674(02)00971-6 es_ES
dc.description.references Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Reviews Molecular Cell Biology, 2(11), 793-805. doi:10.1038/35099066 es_ES
dc.description.references Pearlstein, E., Gold, L., & Garcia-Pardo, A. (1980). Fibronectin: A review of its structure and biological activity. Molecular and Cellular Biochemistry, 29(2). doi:10.1007/bf00220304 es_ES
dc.description.references Keselowsky, B. G., Collard, D. M., & García, A. J. (2003). Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research Part A, 66A(2), 247-259. doi:10.1002/jbm.a.10537 es_ES
dc.description.references Michael, K. E., Vernekar, V. N., Keselowsky, B. G., Meredith, J. C., Latour, R. A., & García, A. J. (2003). Adsorption-Induced Conformational Changes in Fibronectin Due to Interactions with Well-Defined Surface Chemistries. Langmuir, 19(19), 8033-8040. doi:10.1021/la034810a es_ES
dc.description.references García, A. (1999). Integrin–fibronectin interactions at the cell-material interface: initial integrin binding and signaling. Biomaterials, 20(23-24), 2427-2433. doi:10.1016/s0142-9612(99)00170-2 es_ES
dc.description.references Toworfe, G. K., Composto, R. J., Adams, C. S., Shapiro, I. M., & Ducheyne, P. (2004). Fibronectin adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function. Journal of Biomedical Materials Research, 71A(3), 449-461. doi:10.1002/jbm.a.30164 es_ES
dc.description.references Baugh, L., & Vogel, V. (2004). Structural changes of fibronectin adsorbed to model surfaces probed by fluorescence resonance energy transfer. Journal of Biomedical Materials Research, 69A(3), 525-534. doi:10.1002/jbm.a.30026 es_ES
dc.description.references Lan, M. A., Gersbach, C. A., Michael, K. E., Keselowsky, B. G., & García, A. J. (2005). Myoblast proliferation and differentiation on fibronectin-coated self assembled monolayers presenting different surface chemistries. Biomaterials, 26(22), 4523-4531. doi:10.1016/j.biomaterials.2004.11.028 es_ES
dc.description.references Altankov, G., Thom, V., Groth, T., Jankova, K., Jonsson, G., & Ulbricht, M. (2000). Modulating the biocompatibility of polymer surfaces with poly(ethylene glycol): Effect of fibronectin. Journal of Biomedical Materials Research, 52(1), 219-230. doi:10.1002/1097-4636(200010)52:1<219::aid-jbm28>3.0.co;2-f es_ES
dc.description.references Oliveira, N. M., Neto, A. I., Song, W., & Mano, J. F. (2010). Two-Dimensional Open Microfluidic Devices by Tuning the Wettability on Patterned Superhydrophobic Polymeric Surface. Applied Physics Express, 3(8), 085205. doi:10.1143/apex.3.085205 es_ES
dc.description.references Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546. doi:10.1039/tf9444000546 es_ES
dc.description.references Li, X.-M., Reinhoudt, D., & Crego-Calama, M. (2007). What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chemical Society Reviews, 36(8), 1350. doi:10.1039/b602486f es_ES
dc.description.references Bico, J., Tordeux, C., & Quéré, D. (2001). Rough wetting. Europhysics Letters (EPL), 55(2), 214-220. doi:10.1209/epl/i2001-00402-x es_ES
dc.description.references McHale, G., Shirtcliffe, N. J., Aqil, S., Perry, C. C., & Newton, M. I. (2004). Topography Driven Spreading. Physical Review Letters, 93(3). doi:10.1103/physrevlett.93.036102 es_ES
dc.description.references Wenzel, R. N. (1936). RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Industrial & Engineering Chemistry, 28(8), 988-994. doi:10.1021/ie50320a024 es_ES
dc.description.references SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x es_ES
dc.description.references Griffith, L. G. (2002). Tissue Engineering--Current Challenges and Expanding Opportunities. Science, 295(5557), 1009-1014. doi:10.1126/science.1069210 es_ES
dc.description.references Grinnell, F. (1986). Focal adhesion sites and the removal of substratum-bound fibronectin. The Journal of Cell Biology, 103(6), 2697-2706. doi:10.1083/jcb.103.6.2697 es_ES
dc.description.references Iuliano, D. J., Saavedra, S. S., & Truskey, G. A. (1993). Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion. Journal of Biomedical Materials Research, 27(8), 1103-1113. doi:10.1002/jbm.820270816 es_ES
dc.description.references Ugarova, T. P., Zamarron, C., Veklich, Y., Bowditch, R. D., Ginsberg, M. H., Weisel, J. W., & Plow, E. F. (1995). Conformational Transitions in the Cell Binding Domain of Fibronectin. Biochemistry, 34(13), 4457-4466. doi:10.1021/bi00013a039 es_ES
dc.description.references McClary, K. B., Ugarova, T., & Grainger, D. W. (2000). Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold. Journal of Biomedical Materials Research, 50(3), 428-439. doi:10.1002/(sici)1097-4636(20000605)50:3<428::aid-jbm18>3.0.co;2-h es_ES
dc.description.references SCHOEN, R. C., BENTLEY, K. L., & KLEBE, R. J. (1982). Monoclonal Antibody Against Human Fibronectin Which Inhibits Cell Attachment. Hybridoma, 1(2), 99-108. doi:10.1089/hyb.1.1982.1.99 es_ES
dc.description.references Anselme, K., Ponche, A., & Bigerelle, M. (2010). Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: Biological aspects. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224(12), 1487-1507. doi:10.1243/09544119jeim901 es_ES
dc.description.references Cheng, S.-S., Chittur, K. K., Sukenik, C. N., Culp, L. A., & Lewandowska, K. (1994). The Conformation of Fibronectin on Self-Assembled Monolayers with Different Surface Composition: An FTIR/ATR Study. Journal of Colloid and Interface Science, 162(1), 135-143. doi:10.1006/jcis.1994.1018 es_ES
dc.description.references Garcı́a, A. J., Vega, M. D., & Boettiger, D. (1999). Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation. Molecular Biology of the Cell, 10(3), 785-798. doi:10.1091/mbc.10.3.785 es_ES
dc.description.references Pernites, R. B., Santos, C. M., Maldonado, M., Ponnapati, R. R., Rodrigues, D. F., & Advincula, R. C. (2011). Tunable Protein and Bacterial Cell Adsorption on Colloidally Templated Superhydrophobic Polythiophene Films. Chemistry of Materials, 24(5), 870-880. doi:10.1021/cm2007044 es_ES
dc.description.references Shiu, J.-Y., & Chen, P. L. (2007). Addressable Protein Patterning via Switchable Superhydrophobic Microarrays. Advanced Functional Materials, 17(15), 2680-2686. doi:10.1002/adfm.200700122 es_ES
dc.description.references Tsougeni, K., Petrou, P. S., Papageorgiou, D. P., Kakabakos, S. E., Tserepi, A., & Gogolides, E. (2012). Controlled protein adsorption on microfluidic channels with engineered roughness and wettability. Sensors and Actuators B: Chemical, 161(1), 216-222. doi:10.1016/j.snb.2011.10.022 es_ES
dc.description.references Gam-Derouich, S., Gosecka, M., Lepinay, S., Turmine, M., Carbonnier, B., Basinska, T., … Chehimi, M. M. (2011). Highly Hydrophilic Surfaces from Polyglycidol Grafts with Dual Antifouling and Specific Protein Recognition Properties. Langmuir, 27(15), 9285-9294. doi:10.1021/la200290k es_ES
dc.description.references Patel, P., Choi, C. K., & Meng, D. D. (2010). Superhydrophilic Surfaces for Antifogging and Antifouling Microfluidic Devices. Journal of the Association for Laboratory Automation, 15(2), 114-119. doi:10.1016/j.jala.2009.10.012 es_ES
dc.description.references Sela, M. N., Badihi, L., Rosen, G., Steinberg, D., & Kohavi, D. (2007). Adsorption of human plasma proteins to modified titanium surfaces. Clinical Oral Implants Research, 18(5), 630-638. doi:10.1111/j.1600-0501.2007.01373.x es_ES
dc.description.references Khang, D., Kim, S. Y., Liu-Snyder, P., Palmore, G. T. R., Durbin, S. M., & Webster, T. J. (2007). Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: Independent role of surface nano-roughness and associated surface energy. Biomaterials, 28(32), 4756-4768. doi:10.1016/j.biomaterials.2007.07.018 es_ES
dc.description.references González-García, C., Sousa, S. R., Moratal, D., Rico, P., & Salmerón-Sánchez, M. (2010). Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids and Surfaces B: Biointerfaces, 77(2), 181-190. doi:10.1016/j.colsurfb.2010.01.021 es_ES
dc.description.references Miller, D. C., Haberstroh, K. M., & Webster, T. J. (2007). PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion. Journal of Biomedical Materials Research Part A, 81A(3), 678-684. doi:10.1002/jbm.a.31093 es_ES
dc.description.references Martínez, E. C., Hernández, J. C. R., Machado, M., Mano, J. F., Ribelles, J. L. G., Pradas, M. M., & Sánchez, M. S. (2008). Human Chondrocyte Morphology, Its Dedifferentiation, and Fibronectin Conformation on Different PLLA Microtopographies. Tissue Engineering Part A, 14(10), 1751-1762. doi:10.1089/ten.tea.2007.0270 es_ES
dc.description.references Lord, M. S., Cousins, B. G., Doherty, P. J., Whitelock, J. M., Simmons, A., Williams, R. L., & Milthorpe, B. K. (2006). The effect of silica nanoparticulate coatings on serum protein adsorption and cellular response. Biomaterials, 27(28), 4856-4862. doi:10.1016/j.biomaterials.2006.05.037 es_ES
dc.description.references Ulmer, J., Geiger, B., & Spatz, J. P. (2008). Force-induced fibronectin fibrillogenesis in vitro. Soft Matter, 4(10), 1998. doi:10.1039/b808020h es_ES
dc.description.references Salmerón-Sánchez, M., Rico, P., Moratal, D., Lee, T. T., Schwarzbauer, J. E., & García, A. J. (2011). Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials, 32(8), 2099-2105. doi:10.1016/j.biomaterials.2010.11.057 es_ES
dc.description.references Lindon, C., Albagli, O., Pinset, C., & Montarras, D. (2001). Cell Density-Dependent Induction of Endogenous Myogenin (myf4) Gene Expression by Myf5. Developmental Biology, 240(2), 574-584. doi:10.1006/dbio.2001.0435 es_ES
dc.description.references Tanaka, K., Sato, K., Yoshida, T., Fukuda, T., Hanamura, K., Kojima, N., … Watanabe, H. (2011). Evidence for cell density affecting C2C12 myogenesis: possible regulation of myogenesis by cell-cell communication. Muscle & Nerve, 44(6), 968-977. doi:10.1002/mus.22224 es_ES
dc.description.references Chowdhury, S. R., Muneyuki, Y., Takezawa, Y., Kino-oka, M., Saito, A., Sawa, Y., & Taya, M. (2010). Growth and differentiation potentials in confluent state of culture of human skeletal muscle myoblasts. Journal of Bioscience and Bioengineering, 109(3), 310-313. doi:10.1016/j.jbiosc.2009.09.042 es_ES
dc.description.references KASPAR, P., PAJER, P., SEDLAK, D., TAMAOKI, T., & DVORAK, M. (2005). c-Myb inhibits myogenic differentiation through repression of MyoD. Experimental Cell Research, 309(2), 419-428. doi:10.1016/j.yexcr.2005.06.016 es_ES
dc.description.references Gobaa, S., Hoehnel, S., Roccio, M., Negro, A., Kobel, S., & Lutolf, M. P. (2011). Artificial niche microarrays for probing single stem cell fate in high throughput. Nature Methods, 8(11), 949-955. doi:10.1038/nmeth.1732 es_ES
dc.description.references Bondesen, B. A., Jones, K. A., Glasgow, W. C., & Pavlath, G. K. (2007). Inhibition of myoblast migration by prostacyclin is associated with enhanced cell fusion. The FASEB Journal, 21(12), 3338-3345. doi:10.1096/fj.06-7070com es_ES
dc.description.references Olguin, H. C., Santander, C., & Brandan, E. (2003). Inhibition of myoblast migration via decorin expression is critical for normal skeletal muscle differentiation. Developmental Biology, 259(2), 209-224. doi:10.1016/s0012-1606(03)00180-5 es_ES
dc.description.references Rico, P., Hernández, J. C. R., Moratal, D., Altankov, G., Pradas, M. M., & Salmerón-Sánchez, M. (2009). Substrate-Induced Assembly of Fibronectin into Networks: Influence of Surface Chemistry and Effect on Osteoblast Adhesion. Tissue Engineering Part A, 15(11), 3271-3281. doi:10.1089/ten.tea.2009.0141 es_ES
dc.description.references Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66. doi:10.1109/tsmc.1979.4310076 es_ES
dc.description.references Selinummi, J., Seppälä, J., Yli-Harja, O., & Puhakka, J. A. (2005). Software for quantification of labeled bacteria from digital microscope images by automated image analysis. BioTechniques, 39(6), 859-863. doi:10.2144/000112018 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem