- -

Non-monotonic cell differentiation pattern on extreme wettability gradients

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-monotonic cell differentiation pattern on extreme wettability gradients

Mostrar el registro completo del ítem

Cantini, M.; Sousa, M.; Moratal Pérez, D.; Mano, JF.; Salmerón Sánchez, M. (2013). Non-monotonic cell differentiation pattern on extreme wettability gradients. Biomaterials Science. 1(2):202-212. https://doi.org/10.1039/C2BM00063F

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/36855

Ficheros en el ítem

Metadatos del ítem

Título: Non-monotonic cell differentiation pattern on extreme wettability gradients
Autor: Cantini, Marco Sousa, Maria Moratal Pérez, David Mano, Joao F. Salmerón Sánchez, Manuel
Entidad UPV: Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] In this study, we propose a methodology to obtain a family of biomimetic substrates with a hierarchical rough topography at the micro and nanoscale that span the entire range of wettability, from the superhydrophobic ...[+]
Palabras clave: Differential response , Differentiation process , Extracellular matrices , Hydrophilic substrate , Myogenic differentiations , Non-monotonic dependence , Superhydrophilic surface , Wettability gradients
Derechos de uso: Cerrado
Fuente:
Biomaterials Science. (issn: 2047-4830 )
DOI: 10.1039/C2BM00063F
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c2bm00063f
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-01/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/
Agradecimientos:
The support of the Spanish Ministry of Science and Innovation through project MAT2009-14440-C02-01 is acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, ...[+]
Tipo: Artículo

References

Singh, M., Berkland, C., & Detamore, M. S. (2008). Strategies and Applications for Incorporating Physical and Chemical Signal Gradients in Tissue Engineering. Tissue Engineering Part B: Reviews, 14(4), 341-366. doi:10.1089/ten.teb.2008.0304

KENNEDY, S., WASHBURN, N., SIMONJR, C., & AMIS, E. (2006). Combinatorial screen of the effect of surface energy on fibronectin-mediated osteoblast adhesion, spreading and proliferation☆. Biomaterials, 27(20), 3817-3824. doi:10.1016/j.biomaterials.2006.02.044

Tse, J. R., & Engler, A. J. (2011). Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate. PLoS ONE, 6(1), e15978. doi:10.1371/journal.pone.0015978 [+]
Singh, M., Berkland, C., & Detamore, M. S. (2008). Strategies and Applications for Incorporating Physical and Chemical Signal Gradients in Tissue Engineering. Tissue Engineering Part B: Reviews, 14(4), 341-366. doi:10.1089/ten.teb.2008.0304

KENNEDY, S., WASHBURN, N., SIMONJR, C., & AMIS, E. (2006). Combinatorial screen of the effect of surface energy on fibronectin-mediated osteoblast adhesion, spreading and proliferation☆. Biomaterials, 27(20), 3817-3824. doi:10.1016/j.biomaterials.2006.02.044

Tse, J. R., & Engler, A. J. (2011). Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate. PLoS ONE, 6(1), e15978. doi:10.1371/journal.pone.0015978

Kim, M. S., Khang, G., & Lee, H. B. (2008). Gradient polymer surfaces for biomedical applications. Progress in Polymer Science, 33(1), 138-164. doi:10.1016/j.progpolymsci.2007.06.001

Zhang, J., & Han, Y. (2008). A Topography/Chemical Composition Gradient Polystyrene Surface:  Toward the Investigation of the Relationship between Surface Wettability and Surface Structure and Chemical Composition. Langmuir, 24(3), 796-801. doi:10.1021/la702567w

Chaudhury, M. K., & Whitesides, G. M. (1992). How to Make Water Run Uphill. Science, 256(5063), 1539-1541. doi:10.1126/science.256.5063.1539

Ruardy, T. G., Schakenraad, J. M., van der Mei, H. C., & Busscher, H. J. (1997). Preparation and characterization of chemical gradient surfaces and their application for the study of cellular interaction phenomena. Surface Science Reports, 29(1), 3-30. doi:10.1016/s0167-5729(97)00008-3

Zelzer, M., Majani, R., Bradley, J. W., Rose, F. R. A. J., Davies, M. C., & Alexander, M. R. (2008). Investigation of cell–surface interactions using chemical gradients formed from plasma polymers. Biomaterials, 29(2), 172-184. doi:10.1016/j.biomaterials.2007.09.026

Yang, J., Rose, F. R. A. J., Gadegaard, N., & Alexander, M. R. (2009). A High-Throughput Assay of Cell-Surface Interactions using Topographical and Chemical Gradients. Advanced Materials, 21(3), 300-304. doi:10.1002/adma.200801942

Song, W., Veiga, D. D., Custódio, C. A., & Mano, J. F. (2009). Bioinspired Degradable Substrates with Extreme Wettability Properties. Advanced Materials, 21(18), 1830-1834. doi:10.1002/adma.200803680

Yu, X., Wang, Z., Jiang, Y., & Zhang, X. (2006). Surface Gradient Material:  From Superhydrophobicity to Superhydrophilicity. Langmuir, 22(10), 4483-4486. doi:10.1021/la053133c

Sun, T., Tan, H., Han, D., Fu, Q., & Jiang, L. (2005). No Platelet Can Adhere—Largely Improved Blood Compatibility on Nanostructured Superhydrophobic Surfaces. Small, 1(10), 959-963. doi:10.1002/smll.200500095

Ishizaki, T., Saito, N., & Takai, O. (2010). Correlation of Cell Adhesive Behaviors on Superhydrophobic, Superhydrophilic, and Micropatterned Superhydrophobic/Superhydrophilic Surfaces to Their Surface Chemistry. Langmuir, 26(11), 8147-8154. doi:10.1021/la904447c

Neto, A. I., Custódio, C. A., Song, W., & Mano, J. F. (2011). High-throughput evaluation of interactions between biomaterials, proteins and cells using patterned superhydrophobic substrates. Soft Matter, 7(9), 4147. doi:10.1039/c1sm05169e

Oliveira, S. M., Song, W., Alves, N. M., & Mano, J. F. (2011). Chemical modification of bioinspired superhydrophobic polystyrene surfaces to control cell attachment/proliferation. Soft Matter, 7(19), 8932. doi:10.1039/c1sm05943b

Ballester-Beltrán, J., Rico, P., Moratal, D., Song, W., Mano, J. F., & Salmerón-Sánchez, M. (2011). Role of superhydrophobicity in the biological activity of fibronectin at the cell–material interface. Soft Matter, 7(22), 10803. doi:10.1039/c1sm06102j

Li, X., Dai, H., Tan, S., Zhang, X., Liu, H., Wang, Y., … Xu, J. (2009). Facile preparation of poly(ethyl α-cyanoacrylate) superhydrophobic and gradient wetting surfaces. Journal of Colloid and Interface Science, 340(1), 93-97. doi:10.1016/j.jcis.2009.08.017

Lai, Y.-H., Yang, J.-T., & Shieh, D.-B. (2010). A microchip fabricated with a vapor-diffusion self-assembled-monolayer method to transport droplets across superhydrophobic to hydrophilic surfaces. Lab Chip, 10(4), 499-504. doi:10.1039/b917624a

García, A. J. (s. f.). Interfaces to Control Cell-Biomaterial Adhesive Interactions. Advances in Polymer Science, 171-190. doi:10.1007/12_071

Gumbiner, B. M. (1996). Cell Adhesion: The Molecular Basis of Tissue Architecture and Morphogenesis. Cell, 84(3), 345-357. doi:10.1016/s0092-8674(00)81279-9

Werner, C., Pompe, T., & Salchert, K. (2006). Modulating Extracellular Matrix at Interfaces of Polymeric Materials. Advances in Polymer Science, 63-93. doi:10.1007/12_089

M. Salmerón-Sánchez and G.Altankov, in Tissue Engineering, ed. D. Eberli, In-Tech, 2010, vol. 1, pp. 77–102

Hynes, R. O. (2002). Integrins. Cell, 110(6), 673-687. doi:10.1016/s0092-8674(02)00971-6

Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Reviews Molecular Cell Biology, 2(11), 793-805. doi:10.1038/35099066

Pearlstein, E., Gold, L., & Garcia-Pardo, A. (1980). Fibronectin: A review of its structure and biological activity. Molecular and Cellular Biochemistry, 29(2). doi:10.1007/bf00220304

Keselowsky, B. G., Collard, D. M., & García, A. J. (2003). Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research Part A, 66A(2), 247-259. doi:10.1002/jbm.a.10537

Michael, K. E., Vernekar, V. N., Keselowsky, B. G., Meredith, J. C., Latour, R. A., & García, A. J. (2003). Adsorption-Induced Conformational Changes in Fibronectin Due to Interactions with Well-Defined Surface Chemistries. Langmuir, 19(19), 8033-8040. doi:10.1021/la034810a

García, A. (1999). Integrin–fibronectin interactions at the cell-material interface: initial integrin binding and signaling. Biomaterials, 20(23-24), 2427-2433. doi:10.1016/s0142-9612(99)00170-2

Toworfe, G. K., Composto, R. J., Adams, C. S., Shapiro, I. M., & Ducheyne, P. (2004). Fibronectin adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function. Journal of Biomedical Materials Research, 71A(3), 449-461. doi:10.1002/jbm.a.30164

Baugh, L., & Vogel, V. (2004). Structural changes of fibronectin adsorbed to model surfaces probed by fluorescence resonance energy transfer. Journal of Biomedical Materials Research, 69A(3), 525-534. doi:10.1002/jbm.a.30026

Lan, M. A., Gersbach, C. A., Michael, K. E., Keselowsky, B. G., & García, A. J. (2005). Myoblast proliferation and differentiation on fibronectin-coated self assembled monolayers presenting different surface chemistries. Biomaterials, 26(22), 4523-4531. doi:10.1016/j.biomaterials.2004.11.028

Altankov, G., Thom, V., Groth, T., Jankova, K., Jonsson, G., & Ulbricht, M. (2000). Modulating the biocompatibility of polymer surfaces with poly(ethylene glycol): Effect of fibronectin. Journal of Biomedical Materials Research, 52(1), 219-230. doi:10.1002/1097-4636(200010)52:1<219::aid-jbm28>3.0.co;2-f

Oliveira, N. M., Neto, A. I., Song, W., & Mano, J. F. (2010). Two-Dimensional Open Microfluidic Devices by Tuning the Wettability on Patterned Superhydrophobic Polymeric Surface. Applied Physics Express, 3(8), 085205. doi:10.1143/apex.3.085205

Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546. doi:10.1039/tf9444000546

Li, X.-M., Reinhoudt, D., & Crego-Calama, M. (2007). What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chemical Society Reviews, 36(8), 1350. doi:10.1039/b602486f

Bico, J., Tordeux, C., & Quéré, D. (2001). Rough wetting. Europhysics Letters (EPL), 55(2), 214-220. doi:10.1209/epl/i2001-00402-x

McHale, G., Shirtcliffe, N. J., Aqil, S., Perry, C. C., & Newton, M. I. (2004). Topography Driven Spreading. Physical Review Letters, 93(3). doi:10.1103/physrevlett.93.036102

Wenzel, R. N. (1936). RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Industrial & Engineering Chemistry, 28(8), 988-994. doi:10.1021/ie50320a024

SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x

Griffith, L. G. (2002). Tissue Engineering--Current Challenges and Expanding Opportunities. Science, 295(5557), 1009-1014. doi:10.1126/science.1069210

Grinnell, F. (1986). Focal adhesion sites and the removal of substratum-bound fibronectin. The Journal of Cell Biology, 103(6), 2697-2706. doi:10.1083/jcb.103.6.2697

Iuliano, D. J., Saavedra, S. S., & Truskey, G. A. (1993). Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion. Journal of Biomedical Materials Research, 27(8), 1103-1113. doi:10.1002/jbm.820270816

Ugarova, T. P., Zamarron, C., Veklich, Y., Bowditch, R. D., Ginsberg, M. H., Weisel, J. W., & Plow, E. F. (1995). Conformational Transitions in the Cell Binding Domain of Fibronectin. Biochemistry, 34(13), 4457-4466. doi:10.1021/bi00013a039

McClary, K. B., Ugarova, T., & Grainger, D. W. (2000). Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold. Journal of Biomedical Materials Research, 50(3), 428-439. doi:10.1002/(sici)1097-4636(20000605)50:3<428::aid-jbm18>3.0.co;2-h

SCHOEN, R. C., BENTLEY, K. L., & KLEBE, R. J. (1982). Monoclonal Antibody Against Human Fibronectin Which Inhibits Cell Attachment. Hybridoma, 1(2), 99-108. doi:10.1089/hyb.1.1982.1.99

Anselme, K., Ponche, A., & Bigerelle, M. (2010). Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: Biological aspects. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224(12), 1487-1507. doi:10.1243/09544119jeim901

Cheng, S.-S., Chittur, K. K., Sukenik, C. N., Culp, L. A., & Lewandowska, K. (1994). The Conformation of Fibronectin on Self-Assembled Monolayers with Different Surface Composition: An FTIR/ATR Study. Journal of Colloid and Interface Science, 162(1), 135-143. doi:10.1006/jcis.1994.1018

Garcı́a, A. J., Vega, M. D., & Boettiger, D. (1999). Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation. Molecular Biology of the Cell, 10(3), 785-798. doi:10.1091/mbc.10.3.785

Pernites, R. B., Santos, C. M., Maldonado, M., Ponnapati, R. R., Rodrigues, D. F., & Advincula, R. C. (2011). Tunable Protein and Bacterial Cell Adsorption on Colloidally Templated Superhydrophobic Polythiophene Films. Chemistry of Materials, 24(5), 870-880. doi:10.1021/cm2007044

Shiu, J.-Y., & Chen, P. L. (2007). Addressable Protein Patterning via Switchable Superhydrophobic Microarrays. Advanced Functional Materials, 17(15), 2680-2686. doi:10.1002/adfm.200700122

Tsougeni, K., Petrou, P. S., Papageorgiou, D. P., Kakabakos, S. E., Tserepi, A., & Gogolides, E. (2012). Controlled protein adsorption on microfluidic channels with engineered roughness and wettability. Sensors and Actuators B: Chemical, 161(1), 216-222. doi:10.1016/j.snb.2011.10.022

Gam-Derouich, S., Gosecka, M., Lepinay, S., Turmine, M., Carbonnier, B., Basinska, T., … Chehimi, M. M. (2011). Highly Hydrophilic Surfaces from Polyglycidol Grafts with Dual Antifouling and Specific Protein Recognition Properties. Langmuir, 27(15), 9285-9294. doi:10.1021/la200290k

Patel, P., Choi, C. K., & Meng, D. D. (2010). Superhydrophilic Surfaces for Antifogging and Antifouling Microfluidic Devices. Journal of the Association for Laboratory Automation, 15(2), 114-119. doi:10.1016/j.jala.2009.10.012

Sela, M. N., Badihi, L., Rosen, G., Steinberg, D., & Kohavi, D. (2007). Adsorption of human plasma proteins to modified titanium surfaces. Clinical Oral Implants Research, 18(5), 630-638. doi:10.1111/j.1600-0501.2007.01373.x

Khang, D., Kim, S. Y., Liu-Snyder, P., Palmore, G. T. R., Durbin, S. M., & Webster, T. J. (2007). Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: Independent role of surface nano-roughness and associated surface energy. Biomaterials, 28(32), 4756-4768. doi:10.1016/j.biomaterials.2007.07.018

González-García, C., Sousa, S. R., Moratal, D., Rico, P., & Salmerón-Sánchez, M. (2010). Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids and Surfaces B: Biointerfaces, 77(2), 181-190. doi:10.1016/j.colsurfb.2010.01.021

Miller, D. C., Haberstroh, K. M., & Webster, T. J. (2007). PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion. Journal of Biomedical Materials Research Part A, 81A(3), 678-684. doi:10.1002/jbm.a.31093

Martínez, E. C., Hernández, J. C. R., Machado, M., Mano, J. F., Ribelles, J. L. G., Pradas, M. M., & Sánchez, M. S. (2008). Human Chondrocyte Morphology, Its Dedifferentiation, and Fibronectin Conformation on Different PLLA Microtopographies. Tissue Engineering Part A, 14(10), 1751-1762. doi:10.1089/ten.tea.2007.0270

Lord, M. S., Cousins, B. G., Doherty, P. J., Whitelock, J. M., Simmons, A., Williams, R. L., & Milthorpe, B. K. (2006). The effect of silica nanoparticulate coatings on serum protein adsorption and cellular response. Biomaterials, 27(28), 4856-4862. doi:10.1016/j.biomaterials.2006.05.037

Ulmer, J., Geiger, B., & Spatz, J. P. (2008). Force-induced fibronectin fibrillogenesis in vitro. Soft Matter, 4(10), 1998. doi:10.1039/b808020h

Salmerón-Sánchez, M., Rico, P., Moratal, D., Lee, T. T., Schwarzbauer, J. E., & García, A. J. (2011). Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials, 32(8), 2099-2105. doi:10.1016/j.biomaterials.2010.11.057

Lindon, C., Albagli, O., Pinset, C., & Montarras, D. (2001). Cell Density-Dependent Induction of Endogenous Myogenin (myf4) Gene Expression by Myf5. Developmental Biology, 240(2), 574-584. doi:10.1006/dbio.2001.0435

Tanaka, K., Sato, K., Yoshida, T., Fukuda, T., Hanamura, K., Kojima, N., … Watanabe, H. (2011). Evidence for cell density affecting C2C12 myogenesis: possible regulation of myogenesis by cell-cell communication. Muscle & Nerve, 44(6), 968-977. doi:10.1002/mus.22224

Chowdhury, S. R., Muneyuki, Y., Takezawa, Y., Kino-oka, M., Saito, A., Sawa, Y., & Taya, M. (2010). Growth and differentiation potentials in confluent state of culture of human skeletal muscle myoblasts. Journal of Bioscience and Bioengineering, 109(3), 310-313. doi:10.1016/j.jbiosc.2009.09.042

KASPAR, P., PAJER, P., SEDLAK, D., TAMAOKI, T., & DVORAK, M. (2005). c-Myb inhibits myogenic differentiation through repression of MyoD. Experimental Cell Research, 309(2), 419-428. doi:10.1016/j.yexcr.2005.06.016

Gobaa, S., Hoehnel, S., Roccio, M., Negro, A., Kobel, S., & Lutolf, M. P. (2011). Artificial niche microarrays for probing single stem cell fate in high throughput. Nature Methods, 8(11), 949-955. doi:10.1038/nmeth.1732

Bondesen, B. A., Jones, K. A., Glasgow, W. C., & Pavlath, G. K. (2007). Inhibition of myoblast migration by prostacyclin is associated with enhanced cell fusion. The FASEB Journal, 21(12), 3338-3345. doi:10.1096/fj.06-7070com

Olguin, H. C., Santander, C., & Brandan, E. (2003). Inhibition of myoblast migration via decorin expression is critical for normal skeletal muscle differentiation. Developmental Biology, 259(2), 209-224. doi:10.1016/s0012-1606(03)00180-5

Rico, P., Hernández, J. C. R., Moratal, D., Altankov, G., Pradas, M. M., & Salmerón-Sánchez, M. (2009). Substrate-Induced Assembly of Fibronectin into Networks: Influence of Surface Chemistry and Effect on Osteoblast Adhesion. Tissue Engineering Part A, 15(11), 3271-3281. doi:10.1089/ten.tea.2009.0141

Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66. doi:10.1109/tsmc.1979.4310076

Selinummi, J., Seppälä, J., Yli-Harja, O., & Puhakka, J. A. (2005). Software for quantification of labeled bacteria from digital microscope images by automated image analysis. BioTechniques, 39(6), 859-863. doi:10.2144/000112018

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem