- -

Peer group and fuzzy metric to remove noise in images using heterogeneous computing

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Peer group and fuzzy metric to remove noise in images using heterogeneous computing

Show simple item record

Files in this item

dc.contributor.author Sanchez, Guadalupe es_ES
dc.contributor.author Vidal Gimeno, Vicente Emilio es_ES
dc.contributor.author Bataller Mascarell, Jordi es_ES
dc.date.accessioned 2014-04-10T12:11:34Z
dc.date.issued 2012
dc.identifier.isbn 978-3-642-29736-6
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/10251/36969
dc.description.abstract In this paper, we report a study on the parallelization of an algorithm for removing impulsive noise in images. The algorithm is based on the concept of peer group and fuzzy metric. We have developed implementations using Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) for Graphics Processing Unit (GPU). Many sequential algorithms have been proposed to remove noise, but their computational cost is excessive for real-time processing of large images. We developed implementations for a multi- core CPU, for a multi-GPU (several GPUs) and for a combination of both. These implementations were compared also with different sizes of the image in order to find out the settings with the best performance. A study is made using the shared memory and texture memory to minimize access time to data in GPU global memory. The result shows that when the image is distributed in multicore and multi-GPU a greater number of Mpixels/second are processed. es_ES
dc.description.sponsorship This work was funded by the Spanish Ministry of Science and Innovation (Project TIN2008-06570-C04-04) and M. Guadalupe would also like to acknowledge DGEST ITCG for the scholarship awarded through the PROMEP program (Mexico)
dc.format.extent 9 es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation info:eu-repo/grantAgreement/MICINN//TIN2008-06570-C04-04/ES/CONSTRUCCION Y OPTIMIZACION AUTOMATICAS DE BIBLIOTECAS PARALELAS DE COMPUTACION CIENTIFICA - UA/ es_ES
dc.relation.ispartof Euro-Par 2011: Parallel Processing Workshops es_ES
dc.relation.ispartofseries Lecture Notes in Computer Science;vol. 7155
dc.rights Reserva de todos los derechos es_ES
dc.subject Remove impulsive noise es_ES
dc.subject Peer group es_ES
dc.subject Fuzzy metric es_ES
dc.subject Parallel algorithm es_ES
dc.subject CUDA es_ES
dc.subject OpenMP es_ES
dc.subject Multi-core es_ES
dc.subject Multi-GPU es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Peer group and fuzzy metric to remove noise in images using heterogeneous computing es_ES
dc.type Capítulo de libro es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/978-3-642-29737-3
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Sanchez, G.; Vidal Gimeno, VE.; Bataller Mascarell, J. (2012). Peer group and fuzzy metric to remove noise in images using heterogeneous computing. En Euro-Par 2011: Parallel Processing Workshops. Springer Verlag (Germany). 7155:502-510. https://doi.org/10.1007/978-3-642-29737-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename CCPI, CGWS, HeteroPar, HiBB, HPCVirt, HPPC, HPSS, MDGS, ProPer, Resilience, UCHPC, VHPC, 2011 es_ES
dc.relation.conferencedate August 29 - September 2, 2011 es_ES
dc.relation.conferenceplace Bordeaux, France es_ES
dc.relation.publisherversion http://link.springer.com/chapter/10.1007/978-3-642-29737-3_55 es_ES
dc.description.upvformatpinicio 502 es_ES
dc.description.upvformatpfin 510 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7155 es_ES
dc.relation.senia 236236
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Dirección General de Educación Superior Tecnológica, México


This item appears in the following Collection(s)

Show simple item record