Mostrar el registro sencillo del ítem
dc.contributor.author | Eskildsen, Simon F. | es_ES |
dc.contributor.author | Coupé, Pierrick | es_ES |
dc.contributor.author | Fonov, Vladimir | es_ES |
dc.contributor.author | Manjón Herrera, José Vicente | es_ES |
dc.contributor.author | Leung, Kelvin K. | es_ES |
dc.contributor.author | Guizard, Nicolas | es_ES |
dc.contributor.author | Wassef, Shafik N. | es_ES |
dc.contributor.author | Østergaard, Lasse Riis | es_ES |
dc.contributor.author | Collins, D. Louis | es_ES |
dc.contributor.author | Alzheimer's Dis Neuroimaging | |
dc.date.accessioned | 2014-04-17T07:52:34Z | |
dc.date.issued | 2012-02-01 | |
dc.identifier.issn | 1053-8119 | |
dc.identifier.uri | http://hdl.handle.net/10251/37052 | |
dc.description | Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). | es_ES |
dc.description.abstract | Brain extraction is an important step in the analysis of brain images. The variability in brain morphology and the difference in intensity characteristics due to imaging sequences make the development of a general purpose brain extraction algorithm challenging. To address this issue, we propose a new robust method (BEaST) dedicated to produce consistent and accurate brain extraction. This method is based on nonlocal segmentation embedded in a multi-resolution framework. A library of 80 priors is semi-automatically constructed from the NIH-sponsored MRI study of normal brain development, the International Consortium for Brain Mapping, and the Alzheimer's Disease Neuroimaging Initiative databases. In testing, a mean Dice similarity coefficient of 0.9834 ± 0.0053 was obtained when performing leave-one-out cross validation selecting only 20 priors from the library. Validation using the online Segmentation Validation Engine resulted in a top ranking position with a mean Dice coefficient of 0.9781 ± 0.0047. Robustness of BEaST is demonstrated on all baseline ADNI data, resulting in a very low failure rate. The segmentation accuracy of the method is better than two widely used publicly available methods and recent state-of-the-art hybrid approaches. BEaST provides results comparable to a recent label fusion approach, while being 40 times faster and requiring a much smaller library of priors. | es_ES |
dc.description.sponsorship | Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., as well as non-profit partners the Alzheimer's Association and Alzheimer's Drug Discovery Foundation, with participation from the U.S. Food and Drug Administration. Private sector contributions to ADNI are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30AG010129, K01 AG030514, and the Dana Foundation. | en_EN |
dc.format.extent | 12 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | NeuroImage | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Brain extraction | es_ES |
dc.subject | Skull stripping | es_ES |
dc.subject | Patch-based segmentation | es_ES |
dc.subject | Multi-resolution | es_ES |
dc.subject | MRI | es_ES |
dc.subject | BET | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | BEaST: Brain extraction based on nonlocal segmentation technique | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1016/j.neuroimage.2011.09.012 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CIHR//MOP-84360/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CIHR//MOP-111169/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//K01AG030514/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//U01AG024904/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//P30AG010129/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//RD07%2F0067%2F2001/ES/RED TEMÁTICA DE INVESTIGACIÓN COOPERATIVA EN BIOMEDICINA COMPUTACIONAL/ / | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació | es_ES |
dc.description.bibliographicCitation | Eskildsen, SF.; Coupé, P.; Fonov, V.; Manjón Herrera, JV.; Leung, KK.; Guizard, N.; Wassef, SN.... (2012). BEaST: Brain extraction based on nonlocal segmentation technique. NeuroImage. 59(3):2362-2373. https://doi.org/10.1016/j.neuroimage.2011.09.012 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.neuroimage.2011.09.012 | es_ES |
dc.description.upvformatpinicio | 2362 | es_ES |
dc.description.upvformatpfin | 2373 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 59 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 237109 | |
dc.identifier.pmid | 21945694 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | National Institutes of Health, EEUU | es_ES |
dc.contributor.funder | Canadian Institutes of Health Research | es_ES |
dc.contributor.funder | Northern California Institute for Research and Education | es_ES |
dc.contributor.funder | National Institute of Biomedical Imaging and Bioengineering, EEUU | es_ES |
dc.contributor.funder | National Institute on Aging, EEUU | es_ES |
dc.contributor.funder | Dana Foundation | es_ES |
dc.contributor.funder | DoD Alzheimer's Disease Neuroimaging Initiative | es_ES |
dc.contributor.funder | Alzheimer's Research UK |