- -

BEaST: Brain extraction based on nonlocal segmentation technique

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

BEaST: Brain extraction based on nonlocal segmentation technique

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Eskildsen, Simon F. es_ES
dc.contributor.author Coupé, Pierrick es_ES
dc.contributor.author Fonov, Vladimir es_ES
dc.contributor.author Manjón Herrera, José Vicente es_ES
dc.contributor.author Leung, Kelvin K. es_ES
dc.contributor.author Guizard, Nicolas es_ES
dc.contributor.author Wassef, Shafik N. es_ES
dc.contributor.author Østergaard, Lasse Riis es_ES
dc.contributor.author Collins, D. Louis es_ES
dc.contributor.author Alzheimer's Dis Neuroimaging
dc.date.accessioned 2014-04-17T07:52:34Z
dc.date.issued 2012-02-01
dc.identifier.issn 1053-8119
dc.identifier.uri http://hdl.handle.net/10251/37052
dc.description Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). es_ES
dc.description.abstract Brain extraction is an important step in the analysis of brain images. The variability in brain morphology and the difference in intensity characteristics due to imaging sequences make the development of a general purpose brain extraction algorithm challenging. To address this issue, we propose a new robust method (BEaST) dedicated to produce consistent and accurate brain extraction. This method is based on nonlocal segmentation embedded in a multi-resolution framework. A library of 80 priors is semi-automatically constructed from the NIH-sponsored MRI study of normal brain development, the International Consortium for Brain Mapping, and the Alzheimer's Disease Neuroimaging Initiative databases. In testing, a mean Dice similarity coefficient of 0.9834 ± 0.0053 was obtained when performing leave-one-out cross validation selecting only 20 priors from the library. Validation using the online Segmentation Validation Engine resulted in a top ranking position with a mean Dice coefficient of 0.9781 ± 0.0047. Robustness of BEaST is demonstrated on all baseline ADNI data, resulting in a very low failure rate. The segmentation accuracy of the method is better than two widely used publicly available methods and recent state-of-the-art hybrid approaches. BEaST provides results comparable to a recent label fusion approach, while being 40 times faster and requiring a much smaller library of priors. es_ES
dc.description.sponsorship Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., as well as non-profit partners the Alzheimer's Association and Alzheimer's Drug Discovery Foundation, with participation from the U.S. Food and Drug Administration. Private sector contributions to ADNI are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30AG010129, K01 AG030514, and the Dana Foundation. en_EN
dc.format.extent 12 es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof NeuroImage es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Brain extraction es_ES
dc.subject Skull stripping es_ES
dc.subject Patch-based segmentation es_ES
dc.subject Multi-resolution es_ES
dc.subject MRI es_ES
dc.subject BET es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title BEaST: Brain extraction based on nonlocal segmentation technique es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1016/j.neuroimage.2011.09.012
dc.relation.projectID info:eu-repo/grantAgreement/CIHR//MOP-84360/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CIHR//MOP-111169/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//K01AG030514/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//U01AG024904/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//P30AG010129/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RD07%2F0067%2F2001/ES/RED TEMÁTICA DE INVESTIGACIÓN COOPERATIVA EN BIOMEDICINA COMPUTACIONAL/ / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.description.bibliographicCitation Eskildsen, SF.; Coupé, P.; Fonov, V.; Manjón Herrera, JV.; Leung, KK.; Guizard, N.; Wassef, SN.... (2012). BEaST: Brain extraction based on nonlocal segmentation technique. NeuroImage. 59(3):2362-2373. https://doi.org/10.1016/j.neuroimage.2011.09.012 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.neuroimage.2011.09.012 es_ES
dc.description.upvformatpinicio 2362 es_ES
dc.description.upvformatpfin 2373 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 59 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 237109
dc.identifier.pmid 21945694
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Canadian Institutes of Health Research es_ES
dc.contributor.funder Northern California Institute for Research and Education es_ES
dc.contributor.funder National Institute of Biomedical Imaging and Bioengineering, EEUU es_ES
dc.contributor.funder National Institute on Aging, EEUU es_ES
dc.contributor.funder Dana Foundation es_ES
dc.contributor.funder DoD Alzheimer's Disease Neuroimaging Initiative es_ES
dc.contributor.funder Alzheimer's Research UK


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem