Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez Gómez, Pascual | es_ES |
dc.contributor.author | Sanchis Trilles, Germán | es_ES |
dc.contributor.author | Casacuberta Nolla, Francisco | es_ES |
dc.date.accessioned | 2014-05-06T07:26:02Z | |
dc.date.issued | 2011 | |
dc.identifier.isbn | 978-3-642-19436-8 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/10251/37239 | |
dc.description.abstract | New techniques for online adaptation in computer assisted translation are explored and compared to previously existing approaches. Under the online adaptation paradigm, the translation system needs to adapt itself to real-world changing scenarios, where training and tuning may only take place once, when the system is set-up for the first time. For this purpose, post-edit information, as described by a given quality measure, is used as valuable feedback within a dynamic reranking algorithm. Two possible approaches are presented and evaluated. The first one relies on the well-known perceptron algorithm, whereas the second one is a novel approach using the Ridge regression in order to compute the optimum scaling factors within a state-of-the-art SMT system. Experimental results show that such algorithms are able to improve translation quality by learning from the errors produced by the system on a sentence-by-sentence basis. | es_ES |
dc.description.sponsorship | This paper is based upon work supported by the EC (FEDER/FSE) and the Spanish MICINN under projects MIPRCV “Consolider Ingenio 2010” (CSD2007-00018) and iTrans2 (TIN2009-14511). Also supported by the Spanish MITyC under the erudito.com (TSI-020110-2009-439) project, by the Generalitat Valenciana under grant Prometeo/2009/014 and scholarship GV/2010/067 and by the UPV under grant 20091027 | |
dc.format.extent | 13 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Computational Linguistics and Intelligent Text Processing | es_ES |
dc.relation.ispartofseries | Lecture Notes in Computer Science;6609 | |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Machine Traslation | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Online learning via dynamic reranking for Computer Assisted Translation | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1007/978-3-642-19437-5_8 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CSD2007-00018/ES/Multimodal Intraction in Pattern Recognition and Computer Visionm/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MITURCO//TSI-020110-2009-0439/ES/ERUDITO.COM/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F014/ES/Adaptive learning and multimodality in pattern recognition (Almapater)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//20091027/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2010%2F067/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2009-14511/ES/Traduccion De Textos Y Transcripcion De Voz Interactivas/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica | es_ES |
dc.description.bibliographicCitation | Martínez Gómez, P.; Sanchis Trilles, G.; Casacuberta Nolla, F. (2011). Online learning via dynamic reranking for Computer Assisted Translation. En Computational Linguistics and Intelligent Text Processing. Springer Verlag (Germany). 6609:93-105. https://doi.org/10.1007/978-3-642-19437-5_8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 12th International Conference, CICLing 2011 | es_ES |
dc.relation.conferencedate | February 20-26, 2011 | es_ES |
dc.relation.conferenceplace | Tokyo, Japan | es_ES |
dc.relation.publisherversion | http://link.springer.com/chapter/10.1007/978-3-642-19437-5_8 | es_ES |
dc.description.upvformatpinicio | 93 | es_ES |
dc.description.upvformatpfin | 105 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6609 | es_ES |
dc.relation.senia | 210922 | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Ministerio de Industria, Turismo y Comercio | es_ES |
dc.description.references | Brown, P., Pietra, S.D., Pietra, V.D., Mercer, R.: The mathematics of machine translation. In: Computational Linguistics, vol. 19, pp. 263–311 (1993) | es_ES |
dc.description.references | Zens, R., Och, F.J., Ney, H.: Phrase-based statistical machine translation. In: Jarke, M., Koehler, J., Lakemeyer, G. (eds.) KI 2002. LNCS (LNAI), vol. 2479, pp. 18–32. Springer, Heidelberg (2002) | es_ES |
dc.description.references | Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: Proc. HLT/NAACL 2003, pp. 48–54 (2003) | es_ES |
dc.description.references | Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C., Schroeder, J.: (meta-) evaluation of machine translation. In: Proc. of the Workshop on SMT. ACL, pp. 136–158 (2007) | es_ES |
dc.description.references | Papineni, K., Roukos, S., Ward, T.: Maximum likelihood and discriminative training of direct translation models. In: Proc. of ICASSP 1988, pp. 189–192 (1998) | es_ES |
dc.description.references | Och, F., Ney, H.: Discriminative training and maximum entropy models for statistical machine translation. In: Proc. of the ACL 2002, pp. 295–302 (2002) | es_ES |
dc.description.references | Och, F., Zens, R., Ney, H.: Efficient search for interactive statistical machine translation. In: Proc. of EACL 2003, pp. 387–393 (2003) | es_ES |
dc.description.references | Sanchis-Trilles, G., Casacuberta, F.: Log-linear weight optimisation via bayesian adaptation in statistical machine translation. In: Proceedings of COLING 2010, Beijing, China (2010) | es_ES |
dc.description.references | Callison-Burch, C., Bannard, C., Schroeder, J.: Improving statistical translation through editing. In: Proc. of 9th EAMT Workshop Broadening Horizons of Machine Translation and its Applications, Malta (2004) | es_ES |
dc.description.references | Barrachina, S., et al.: Statistical approaches to computer-assisted translation. Computational Linguistics 35, 3–28 (2009) | es_ES |
dc.description.references | Casacuberta, F., et al.: Human interaction for high quality machine translation. Communications of the ACM 52, 135–138 (2009) | es_ES |
dc.description.references | Ortiz-Martínez, D., García-Varea, I., Casacuberta, F.: Online learning for interactive statistical machine translation. In: Proceedings of NAACL HLT, Los Angeles (2010) | es_ES |
dc.description.references | España-Bonet, C., Màrquez, L.: Robust estimation of feature weights in statistical machine translation. In: 14th Annual Conference of the EAMT (2010) | es_ES |
dc.description.references | Reverberi, G., Szedmak, S., Cesa-Bianchi, N., et al.: Deliverable of package 4: Online learning algorithms for computer-assisted translation (2008) | es_ES |
dc.description.references | Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. Journal of Machine Learning Research 7, 551–585 (2006) | es_ES |
dc.description.references | Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A study of translation edit rate with targeted human annotation. In: Proc. of AMTA, Cambridge, MA, USA (2006) | es_ES |
dc.description.references | Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: A method for automatic evaluation of machine translation. In: Proc. of ACL 2002 (2002) | es_ES |
dc.description.references | Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65, 386–408 (1958) | es_ES |
dc.description.references | Collins, M.: Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. In: EMNLP 2002, Philadelphia, PA, USA, pp. 1–8 (2002) | es_ES |
dc.description.references | Koehn, P.: Europarl: A parallel corpus for statistical machine translation. In: Proc. of the MT Summit X, pp. 79–86 (2005) | es_ES |
dc.description.references | Koehn, P., et al.: Moses: Open source toolkit for statistical machine translation. In: Proc. of the ACL Demo and Poster Sessions, Prague, Czech Republic, pp. 177–180 (2007) | es_ES |
dc.description.references | Och, F.: Minimum error rate training for statistical machine translation. In: Proc. of ACL 2003, pp. 160–167 (2003) | es_ES |
dc.description.references | Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing II, pp. 181–184 (1995) | es_ES |
dc.description.references | Stolcke, A.: SRILM – an extensible language modeling toolkit. In: Proc. of ICSLP 2002, pp. 901–904 (2002) | es_ES |