- -

Strategies for spectrum slicing based on restarted Lanczos methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Strategies for spectrum slicing based on restarted Lanczos methods

Mostrar el registro completo del ítem

Campos González, MC.; Román Moltó, JE. (2012). Strategies for spectrum slicing based on restarted Lanczos methods. Numerical Algorithms. 60(2):279-295. https://doi.org/10.1007/s11075-012-9564-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37323

Ficheros en el ítem

Metadatos del ítem

Título: Strategies for spectrum slicing based on restarted Lanczos methods
Autor: Campos González, Maria Camen Román Moltó, José Enrique
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
In the context of symmetric-definite generalized eigenvalue problems, it is often required to compute all eigenvalues contained in a prescribed interval. For large-scale problems, the method of choice is the so-called ...[+]
Palabras clave: Large-scale eigenvalue computations , Parallel numerical libraries , Spectrum slicing
Derechos de uso: Reserva de todos los derechos
Fuente:
Numerical Algorithms. (issn: 1017-1398 ) (eissn: 1572-9265 )
DOI: 10.1007/s11075-012-9564-z
Editorial:
Springer Verlag (Germany)
Versión del editor: http://link.springer.com/article/10.1007%2Fs11075-012-9564-z
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TIN2009-07519/ES/Metodos Avanzados Y Tecnicas Computacionales Novedosas Para La Resolucion Numerica De Problemas De Valores Propios De Gran Dimension/
Agradecimientos:
This work was supported by the Spanish Ministerio de Ciencia e Innovacion under grant TIN2009-07519.
Tipo: Artículo

References

Amestoy, P.R, Duff, I.S., L’Excellent, J.Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(2–4), 501–520 (2000)

Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.2, Argonne National Laboratory (2011)

Ericsson, T., Ruhe, A.: The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems. Math. Comput. 35(152), 1251–1268 (1980) [+]
Amestoy, P.R, Duff, I.S., L’Excellent, J.Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(2–4), 501–520 (2000)

Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.2, Argonne National Laboratory (2011)

Ericsson, T., Ruhe, A.: The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems. Math. Comput. 35(152), 1251–1268 (1980)

Grimes, R.G., Lewis, J.G., Simon, H.D.: A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems. SIAM J. Matrix Anal. Appl. 15(1), 228–272 (1994)

Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)

Hernandez, V., Roman, J.E., Tomas, A.: Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement. Parallel Comput. 33(7–8), 521–540 (2007)

Marques, O.A.: BLZPACK: description and user’s guide. Tech. Rep. TR/PA/95/30, CERFACS, Toulouse, France (1995)

Meerbergen, K.: Changing poles in the rational Lanczos method for the Hermitian eigenvalue problem. Numer. Linear Algebra Appl. 8(1), 33–52 (2001)

Meerbergen, K., Scott, J.: The design of a block rational Lanczos code with partial reorthogonalization and implicit restarting. Tech. Rep. RAL-TR-2000-011, Rutherford Appleton Laboratory (2000)

Nour-Omid, B., Parlett, B.N., Ericsson, T., Jensen, P.S.: How to implement the spectral transformation. Math. Comput. 48(178), 663–673 (1987)

Olsson, K.H.A., Ruhe, A.: Rational Krylov for eigenvalue computation and model order reduction. BIT Numer. Math. 46, 99–111 (2006)

Ruhe, A.: Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl. 58, 391–405 (1984)

Ruhe, A.: Rational Krylov subspace method. In: Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.) Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, Society for Industrial and Applied Mathematics, pp. 246–249. Philadelphia (2000)

Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992)

Stewart, G.W.: A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23(3), 601–614 (2001)

Vidal, AM., Garcia, V.M., Alonso, P., Bernabeu, M.O.: Parallel computation of the eigenvalues of symmetric Toeplitz matrices through iterative methods. J. Parallel Distrib. Comput. 68(8), 1113–1121 (2008)

Wu, K., Simon, H.: Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM J. Matrix Anal. Appl. 22(2), 602–616 (2000)

Zhang, H., Smith, B., Sternberg, M., Zapol, P.: SIPs: Shift-and-invert parallel spectral transformations. ACM Trans. Math. Softw. 33(2), 1–19 (2007)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem