Mostrar el registro sencillo del ítem
dc.contributor.author | Villegas, Mauricio | es_ES |
dc.contributor.author | Paredes Palacios, Roberto | es_ES |
dc.date.accessioned | 2014-05-08T13:37:53Z | |
dc.date.issued | 2011-03 | |
dc.identifier.issn | 0167-8655 | |
dc.identifier.uri | http://hdl.handle.net/10251/37325 | |
dc.description.abstract | There is a great interest in dimensionality reduction techniques for tackling the problem of high-dimensional pattern classification. This paper addresses the topic of supervised learning of a linear dimension reduction mapping suitable for classification problems. The proposed optimization procedure is based on minimizing an estimation of the nearest neighbor classifier error probability, and it learns a linear projection and a small set of prototypes that support the class boundaries. The learned classifier has the property of being very computationally efficient, making the classification much faster than state-of-the-art classifiers, such as SVMs, while having competitive recognition accuracy. The approach has been assessed through a series of experiments, showing a uniformly good behavior, and competitive compared with some recently proposed supervised dimensionality reduction techniques. © 2010 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | Work partially supported by the Spanish projects TIN2008-04571 and Consolider Ingenio 2010: MIPRCV (CSD2007-00018). | en_EN |
dc.format.extent | 7 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Pattern Recognition Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Dimensionality reduction | es_ES |
dc.subject | Nearest-neighbor classifier | es_ES |
dc.subject | Pattern recognition | es_ES |
dc.subject | Class boundary | es_ES |
dc.subject | Classification errors | es_ES |
dc.subject | Computationally efficient | es_ES |
dc.subject | Dimensionality reduction techniques | es_ES |
dc.subject | Error probabilities | es_ES |
dc.subject | High-dimensional | es_ES |
dc.subject | Linear dimension reduction | es_ES |
dc.subject | Linear projections | es_ES |
dc.subject | Nearest Neighbor classifier | es_ES |
dc.subject | Nearest neighbor classifiers | es_ES |
dc.subject | Nearest-neighbors | es_ES |
dc.subject | Optimization procedures | es_ES |
dc.subject | Pattern classification | es_ES |
dc.subject | Recognition accuracy | es_ES |
dc.subject | Optimization | es_ES |
dc.subject | Probability | es_ES |
dc.subject | Classifiers | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Dimensionality reduction by minimizing nearest-neighbor classification error | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1016/j.patrec.2010.12.002 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2008-04571/ES/RISE: RELEVANCE IMAGE SEARCH ENGINE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CSD2007-00018/ES/Multimodal Intraction in Pattern Recognition and Computer Visionm/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Villegas, M.; Paredes Palacios, R. (2011). Dimensionality reduction by minimizing nearest-neighbor classification error. Pattern Recognition Letters. 32(4):633-639. https://doi.org/10.1016/j.patrec.2010.12.002 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.patrec.2010.12.002 | es_ES |
dc.description.upvformatpinicio | 633 | es_ES |
dc.description.upvformatpfin | 639 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 32 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 39130 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |