- -

Dimensionality reduction by minimizing nearest-neighbor classification error

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Dimensionality reduction by minimizing nearest-neighbor classification error

Show simple item record

Files in this item

dc.contributor.author Villegas, Mauricio es_ES
dc.contributor.author Paredes Palacios, Roberto es_ES
dc.date.accessioned 2014-05-08T13:37:53Z
dc.date.issued 2011-03
dc.identifier.issn 0167-8655
dc.identifier.uri http://hdl.handle.net/10251/37325
dc.description.abstract There is a great interest in dimensionality reduction techniques for tackling the problem of high-dimensional pattern classification. This paper addresses the topic of supervised learning of a linear dimension reduction mapping suitable for classification problems. The proposed optimization procedure is based on minimizing an estimation of the nearest neighbor classifier error probability, and it learns a linear projection and a small set of prototypes that support the class boundaries. The learned classifier has the property of being very computationally efficient, making the classification much faster than state-of-the-art classifiers, such as SVMs, while having competitive recognition accuracy. The approach has been assessed through a series of experiments, showing a uniformly good behavior, and competitive compared with some recently proposed supervised dimensionality reduction techniques. © 2010 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship Work partially supported by the Spanish projects TIN2008-04571 and Consolider Ingenio 2010: MIPRCV (CSD2007-00018). en_EN
dc.format.extent 7 es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Pattern Recognition Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dimensionality reduction es_ES
dc.subject Nearest-neighbor classifier es_ES
dc.subject Pattern recognition es_ES
dc.subject Class boundary es_ES
dc.subject Classification errors es_ES
dc.subject Computationally efficient es_ES
dc.subject Dimensionality reduction techniques es_ES
dc.subject Error probabilities es_ES
dc.subject High-dimensional es_ES
dc.subject Linear dimension reduction es_ES
dc.subject Linear projections es_ES
dc.subject Nearest Neighbor classifier es_ES
dc.subject Nearest neighbor classifiers es_ES
dc.subject Nearest-neighbors es_ES
dc.subject Optimization procedures es_ES
dc.subject Pattern classification es_ES
dc.subject Recognition accuracy es_ES
dc.subject Optimization es_ES
dc.subject Probability es_ES
dc.subject Classifiers es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Dimensionality reduction by minimizing nearest-neighbor classification error es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1016/j.patrec.2010.12.002
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2008-04571/ES/RISE: RELEVANCE IMAGE SEARCH ENGINE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00018/ES/Multimodal Intraction in Pattern Recognition and Computer Visionm/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Villegas, M.; Paredes Palacios, R. (2011). Dimensionality reduction by minimizing nearest-neighbor classification error. Pattern Recognition Letters. 32(4):633-639. https://doi.org/10.1016/j.patrec.2010.12.002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.patrec.2010.12.002 es_ES
dc.description.upvformatpinicio 633 es_ES
dc.description.upvformatpfin 639 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 32 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 39130
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


This item appears in the following Collection(s)

Show simple item record