dc.contributor.author |
Villegas, Mauricio
|
es_ES |
dc.contributor.author |
Paredes Palacios, Roberto
|
es_ES |
dc.date.accessioned |
2014-05-08T13:37:53Z |
|
dc.date.issued |
2011-03 |
|
dc.identifier.issn |
0167-8655 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/37325 |
|
dc.description.abstract |
There is a great interest in dimensionality reduction techniques for tackling the problem of high-dimensional pattern classification. This paper addresses the topic of supervised learning of a linear dimension reduction mapping suitable for classification problems. The proposed optimization procedure is based on minimizing an estimation of the nearest neighbor classifier error probability, and it learns a linear projection and a small set of prototypes that support the class boundaries. The learned classifier has the property of being very computationally efficient, making the classification much faster than state-of-the-art classifiers, such as SVMs, while having competitive recognition accuracy. The approach has been assessed through a series of experiments, showing a uniformly good behavior, and competitive compared with some recently proposed supervised dimensionality reduction techniques. © 2010 Elsevier B.V. All rights reserved. |
es_ES |
dc.description.sponsorship |
Work partially supported by the Spanish projects TIN2008-04571 and Consolider Ingenio 2010: MIPRCV (CSD2007-00018). |
en_EN |
dc.format.extent |
7 |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Elsevier |
es_ES |
dc.relation.ispartof |
Pattern Recognition Letters |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Dimensionality reduction |
es_ES |
dc.subject |
Nearest-neighbor classifier |
es_ES |
dc.subject |
Pattern recognition |
es_ES |
dc.subject |
Class boundary |
es_ES |
dc.subject |
Classification errors |
es_ES |
dc.subject |
Computationally efficient |
es_ES |
dc.subject |
Dimensionality reduction techniques |
es_ES |
dc.subject |
Error probabilities |
es_ES |
dc.subject |
High-dimensional |
es_ES |
dc.subject |
Linear dimension reduction |
es_ES |
dc.subject |
Linear projections |
es_ES |
dc.subject |
Nearest Neighbor classifier |
es_ES |
dc.subject |
Nearest neighbor classifiers |
es_ES |
dc.subject |
Nearest-neighbors |
es_ES |
dc.subject |
Optimization procedures |
es_ES |
dc.subject |
Pattern classification |
es_ES |
dc.subject |
Recognition accuracy |
es_ES |
dc.subject |
Optimization |
es_ES |
dc.subject |
Probability |
es_ES |
dc.subject |
Classifiers |
es_ES |
dc.subject.classification |
LENGUAJES Y SISTEMAS INFORMATICOS |
es_ES |
dc.title |
Dimensionality reduction by minimizing nearest-neighbor classification error |
es_ES |
dc.type |
Artículo |
es_ES |
dc.embargo.lift |
10000-01-01 |
|
dc.embargo.terms |
forever |
es_ES |
dc.identifier.doi |
10.1016/j.patrec.2010.12.002 |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/MICINN//TIN2008-04571/ES/RISE: RELEVANCE IMAGE SEARCH ENGINE/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MEC//CSD2007-00018/ES/Multimodal Intraction in Pattern Recognition and Computer Visionm/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació |
es_ES |
dc.description.bibliographicCitation |
Villegas, M.; Paredes Palacios, R. (2011). Dimensionality reduction by minimizing nearest-neighbor classification error. Pattern Recognition Letters. 32(4):633-639. https://doi.org/10.1016/j.patrec.2010.12.002 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.1016/j.patrec.2010.12.002 |
es_ES |
dc.description.upvformatpinicio |
633 |
es_ES |
dc.description.upvformatpfin |
639 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
32 |
es_ES |
dc.description.issue |
4 |
es_ES |
dc.relation.senia |
39130 |
|
dc.contributor.funder |
Ministerio de Educación y Ciencia |
es_ES |
dc.contributor.funder |
Ministerio de Ciencia e Innovación |
es_ES |