- -

Chaotic differential operators

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Chaotic differential operators

Show full item record

Conejero Casares, JA.; Martínez Jiménez, F. (2011). Chaotic differential operators. Revista- Real Academia de Ciencias Exactas Fisicas Y Naturales Serie a Matematicas. 105(2):423-431. doi:10.1007/s13398-011-0026-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37327

Files in this item

Item Metadata

Title: Chaotic differential operators
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
We give sufficient conditions for chaos of (differential) operators on Hilbert spaces of entire functions. To this aim we establish conditions on the coefficients of a polynomial P(z) such that P(B) is chaotic on the space ...[+]
Subjects: Backward shifts , Chaotic operators , Differential operators , Hypercyclic operators
Copyrigths: Reserva de todos los derechos
Source:
Revista- Real Academia de Ciencias Exactas Fisicas Y Naturales Serie a Matematicas. (issn: 1578-7303 )
DOI: 10.1007/s13398-011-0026-6
Publisher:
Springer Verlag (Germany)
Publisher version: http://link.springer.com/article/10.1007%2Fs13398-011-0026-6
Thanks:
This work was partially supported by the MEC and FEDER Projects MTM2007-64222, MTM2010-14909, and by GVA Project GV/2010/091, and by UPV Project PAID-06-09-2932. The authors would like to thank A. Peris for helpful comments ...[+]
Type: Artículo

References

Bayart, F., Matheron, É.: Dynamics of Linear Operators, Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)

Bermúdez T., Miller V.G.: On operators T such that f(T) is hypercyclic. Integr. Equ. Oper. Theory 37(3), 332–340 (2000)

Bonet J., Martínez-Giménez F., Peris A.: Linear chaos on Fréchet spaces. Int. J. Bifur. Chaos Appl. Sci. Eng. 13(7), 1649–1655 (2003) [+]
Bayart, F., Matheron, É.: Dynamics of Linear Operators, Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)

Bermúdez T., Miller V.G.: On operators T such that f(T) is hypercyclic. Integr. Equ. Oper. Theory 37(3), 332–340 (2000)

Bonet J., Martínez-Giménez F., Peris A.: Linear chaos on Fréchet spaces. Int. J. Bifur. Chaos Appl. Sci. Eng. 13(7), 1649–1655 (2003)

Chan K.C., Shapiro J.H.: The cyclic behavior of translation operators on Hilbert spaces of entire functions. Indiana Univ. Math. J. 40(4), 1421–1449 (1991)

Conejero J.A., Müller V.: On the universality of multipliers on $${\mathcal{H}({\mathbb {C}})}$$ . J. Approx. Theory. 162(5), 1025–1032 (2010)

deLaubenfels R., Emamirad H.: Chaos for functions of discrete and continuous weighted shift operators. Ergodic Theory Dyn. Syst. 21(5), 1411–1427 (2001)

Devaney, R.L.: An introduction to chaotic dynamical systems, 2nd edn. In: Addison-Wesley Studies in Nonlinearity. Addison-Wesley Publishing Company Advanced Book Program, Redwood City (1989)

Godefroy G., Shapiro J.H.: Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98(2), 229–269 (1991)

Grosse-Erdmann K.-G.: Hypercyclic and chaotic weighted shifts. Stud. Math. 139(1), 47–68 (2000)

Grosse-Erdmann, K.-G., Peris, A.,: Linear chaos. Universitext, Springer, New York (to appear, 2011)

Herzog G., Schmoeger C.: On operators T such that f(T) is hypercyclic. Stud. Math. 108(3), 209–216 (1994)

Kahane, J.-P.: Some random series of functions, 2nd edn. In: Cambridge Studies in Advanced Mathematics, vol. 5. Cambridge University Press, Cambridge (1985)

Martínez-Giménez F., Peris A.: Chaos for backward shift operators. Int. J. Bifur. Chaos Appl. Sci. Eng. 12(8), 1703–1715 (2002)

Martínez-Giménez F.: Chaos for power series of backward shift operators. Proc. Am. Math. Soc. 135, 1741–1752 (2007)

Müller V.: On the Salas theorem and hypercyclicity of f(T). Integr. Equ. Oper. Theory 67(3), 439–448 (2010)

Protopopescu V., Azmy Y.Y.: Topological chaos for a class of linear models. Math. Models Methods Appl. Sci. 2(1), 79–90 (1992)

Rolewicz S.: On orbits of elements. Stud. Math. 32, 17–22 (1969)

Salas H.N.: Hypercyclic weighted shifts. Trans. Am. Math. Soc. 347(3), 93–1004 (1995)

Shapiro, J.H.: Simple connectivity and linear chaos. Rend. Circ. Mat. Palermo. (2) Suppl. 56, 27–48 (1998)

[-]

This item appears in the following Collection(s)

Show full item record