Bayart, F., Matheron, É.: Dynamics of Linear Operators, Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)
Bermúdez T., Miller V.G.: On operators T such that f(T) is hypercyclic. Integr. Equ. Oper. Theory 37(3), 332–340 (2000)
Bonet J., Martínez-Giménez F., Peris A.: Linear chaos on Fréchet spaces. Int. J. Bifur. Chaos Appl. Sci. Eng. 13(7), 1649–1655 (2003)
[+]
Bayart, F., Matheron, É.: Dynamics of Linear Operators, Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)
Bermúdez T., Miller V.G.: On operators T such that f(T) is hypercyclic. Integr. Equ. Oper. Theory 37(3), 332–340 (2000)
Bonet J., Martínez-Giménez F., Peris A.: Linear chaos on Fréchet spaces. Int. J. Bifur. Chaos Appl. Sci. Eng. 13(7), 1649–1655 (2003)
Chan K.C., Shapiro J.H.: The cyclic behavior of translation operators on Hilbert spaces of entire functions. Indiana Univ. Math. J. 40(4), 1421–1449 (1991)
Conejero J.A., Müller V.: On the universality of multipliers on $${\mathcal{H}({\mathbb {C}})}$$ . J. Approx. Theory. 162(5), 1025–1032 (2010)
deLaubenfels R., Emamirad H.: Chaos for functions of discrete and continuous weighted shift operators. Ergodic Theory Dyn. Syst. 21(5), 1411–1427 (2001)
Devaney, R.L.: An introduction to chaotic dynamical systems, 2nd edn. In: Addison-Wesley Studies in Nonlinearity. Addison-Wesley Publishing Company Advanced Book Program, Redwood City (1989)
Godefroy G., Shapiro J.H.: Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98(2), 229–269 (1991)
Grosse-Erdmann K.-G.: Hypercyclic and chaotic weighted shifts. Stud. Math. 139(1), 47–68 (2000)
Grosse-Erdmann, K.-G., Peris, A.,: Linear chaos. Universitext, Springer, New York (to appear, 2011)
Herzog G., Schmoeger C.: On operators T such that f(T) is hypercyclic. Stud. Math. 108(3), 209–216 (1994)
Kahane, J.-P.: Some random series of functions, 2nd edn. In: Cambridge Studies in Advanced Mathematics, vol. 5. Cambridge University Press, Cambridge (1985)
Martínez-Giménez F., Peris A.: Chaos for backward shift operators. Int. J. Bifur. Chaos Appl. Sci. Eng. 12(8), 1703–1715 (2002)
Martínez-Giménez F.: Chaos for power series of backward shift operators. Proc. Am. Math. Soc. 135, 1741–1752 (2007)
Müller V.: On the Salas theorem and hypercyclicity of f(T). Integr. Equ. Oper. Theory 67(3), 439–448 (2010)
Protopopescu V., Azmy Y.Y.: Topological chaos for a class of linear models. Math. Models Methods Appl. Sci. 2(1), 79–90 (1992)
Rolewicz S.: On orbits of elements. Stud. Math. 32, 17–22 (1969)
Salas H.N.: Hypercyclic weighted shifts. Trans. Am. Math. Soc. 347(3), 93–1004 (1995)
Shapiro, J.H.: Simple connectivity and linear chaos. Rend. Circ. Mat. Palermo. (2) Suppl. 56, 27–48 (1998)
[-]