- -

Synthesis and evaluation of thiosemicarbazones functionalized with furylmoieties as new chemosensors for anion recognition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis and evaluation of thiosemicarbazones functionalized with furylmoieties as new chemosensors for anion recognition

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Santos Figueroa, Luis Enrique es_ES
dc.contributor.author Moragues Pons, María Esperanza es_ES
dc.contributor.author Raposo, M. Manuela M. es_ES
dc.contributor.author Batista, Rosa M.F. es_ES
dc.contributor.author Costa, Susana P. G. es_ES
dc.contributor.author Ferreira, R. Cristina M. es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Martínez Mañez, Ramón es_ES
dc.contributor.author Ros-Lis, José Vicente es_ES
dc.contributor.author Soto Camino, Juan es_ES
dc.date.accessioned 2014-05-09T14:16:45Z
dc.date.issued 2012-07-24
dc.identifier.issn 1477-0520
dc.identifier.uri http://hdl.handle.net/10251/37361
dc.description.abstract A family of heterocyclic thiosemicarbazone dyes (3a-f and 4) containing furyl groups was synthesized in good yields, characterized and their response in acetonitrile in the presence of selected anions was studied. Acetonitrile solutions of 3a-f and 4 showed absorption bands in the 335-396 nm range which are modulated by the electron donor or acceptor strength of the heterocyclic systems appended to the thiosemicarbazone moiety. Fluoride, chloride, bromide, iodide, dihydrogen phosphate, hydrogen sulphate, nitrate, acetate and cyanide anions were used in recognition studies. From these anions, only sensing features were seen for fluoride, cyanide, acetate and dihydrogen phosphate. Two clearly different chromo-fluorogenic behaviours were observed: (i) a small shift of the absorption band due to the coordination of the anions with the thiourea protons and (ii) the appearance of a new red shifted band due to deprotonation. For the latter effect, a change in the colour of solution from pale yellow to purple was observed. Fluorescence studies were also in agreement with the different effects observed in the UV/Vis titrations. In this case, hydrogen bonding interactions were visible through the enhancement of the emission band, whereas deprotonation induced the appearance of a new red-shifted emission. Logarithms of stability constants for the two processes (complex formation + deprotonation) for receptors 3a-f in the presence of fluoride and acetate anions were determined from spectrophotometric titrations using the HypSpec V1.1.18 program. Semi-empirical calculations to evaluate the hydrogen-donating ability of the receptors and a prospective electrochemical characterization of compound 3b in the presence of fluoride were also performed. © 2012 The Royal Society of Chemistry. es_ES
dc.description.sponsorship We thank the Spanish Government (project MAT2009-14564-C04-01) and the Generalitat Valenciana (project PROMETEO/2009/016) for support. We are also grateful to the Fundacao para a Ciencia e Tecnologia (Portugal) and FEDER-COMPETE for financial support through the Centro de Quimica - Universidade do Minho, Project PEst-C/QUI/UI0686/2011 (F-COMP-01-0124-FEDER-022716) and a Post-doctoral grant to R. M. F. Batista (SFRH/BPD/79333/2011). The NMR spectrometer Bruker Avance III 400 is part of the National NMR Network and was purchased within the framework of the National Program for Scientific Re-equipment, with funds from FCT. The authors are also indebted to the programme "Accoes Integradas Luso-Espanholas/CRUP", for bilateral agreement number E-144/10. Thanks also go to the Fundacion Carolina and UPNFM-Honduras for a doctoral grant to L. E. Santos-Figueroa and the Spanish Ministry of Science and Innovation for an FPU grant to M. E. Moragues. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Organic and Biomolecular Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Acetate anions es_ES
dc.subject Acetonitrile solutions es_ES
dc.subject Anion recognition es_ES
dc.subject Chemo-sensors es_ES
dc.subject Dihydrogen phosphate es_ES
dc.subject Electron donors es_ES
dc.subject Emission bands es_ES
dc.subject Fluorescence studies es_ES
dc.subject Heterocyclic systems es_ES
dc.subject Hydrogen bonding interactions es_ES
dc.subject Hydrogen sulphate es_ES
dc.subject Red-shifted emission es_ES
dc.subject Spectrophotometric titrations es_ES
dc.subject Thiosemicarbazones es_ES
dc.subject Bromine compounds es_ES
dc.subject Chlorine compounds es_ES
dc.subject Cyanides es_ES
dc.subject Deprotonation es_ES
dc.subject Hydrogen bonds es_ES
dc.subject Phenols es_ES
dc.subject Thioureas es_ES
dc.subject Volatile fatty acids es_ES
dc.subject Negative ions es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Synthesis and evaluation of thiosemicarbazones functionalized with furylmoieties as new chemosensors for anion recognition es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1039/c2ob26200b
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-01/ES/Nanomateriales Hibridos Para El Desarrollo De "Puertas Moleculares" De Aplicacion En Procesos De Reconocimiento Y Terapeutica Y Para La Deteccion De Explosivos./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH/BPD/79333/2011/PT/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//PEst-C/QUI/UI0686/2011/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//F-COMP-01-0124-FEDER-022716/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Santos Figueroa, LE.; Moragues Pons, ME.; Raposo, MMM.; Batista, RM.; Costa, SPG.; Ferreira, RCM.; Sancenón Galarza, F.... (2012). Synthesis and evaluation of thiosemicarbazones functionalized with furylmoieties as new chemosensors for anion recognition. Organic and Biomolecular Chemistry. 10(36):7418-7428. https://doi.org/10.1039/c2ob26200b es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/doi:10.1039/c2ob26200b es_ES
dc.description.upvformatpinicio 7418 es_ES
dc.description.upvformatpfin 7428 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 36 es_ES
dc.relation.senia 223941
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal
dc.contributor.funder Fundación Carolina
dc.contributor.funder Universidad Pedagógica Nacional Francisco Morazán, Honduras
dc.contributor.funder Universidade do Minho
dc.description.references Basabe-Desmonts, L., Reinhoudt, D. N., & Crego-Calama, M. (2007). Design of fluorescent materials for chemical sensing. Chemical Society Reviews, 36(6), 993. doi:10.1039/b609548h es_ES
dc.description.references Martínez-Máñez, R., Sancenón, F., Hecht, M., Biyikal, M., & Rurack, K. (2010). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry, 399(1), 55-74. doi:10.1007/s00216-010-4198-2 es_ES
dc.description.references Karuppannan, S., & Chambron, J.-C. (2011). Supramolecular Chemical Sensors Based on Pyrene Monomer-Excimer Dual Luminescence. Chemistry - An Asian Journal, 6(4), 964-984. doi:10.1002/asia.201000724 es_ES
dc.description.references Amendola, V., Bonizzoni, M., Esteban-Gómez, D., Fabbrizzi, L., Licchelli, M., Sancenón, F., & Taglietti, A. (2006). Some guidelines for the design of anion receptors. Coordination Chemistry Reviews, 250(11-12), 1451-1470. doi:10.1016/j.ccr.2006.01.006 es_ES
dc.description.references Suksai, C., & Tuntulani, T. (2003). Chromogenic anion sensors. Chemical Society Reviews, 32(4), 192. doi:10.1039/b209598j es_ES
dc.description.references Nolan, E. M., & Lippard, S. J. (2008). Tools and Tactics for the Optical Detection of Mercuric Ion. Chemical Reviews, 108(9), 3443-3480. doi:10.1021/cr068000q es_ES
dc.description.references Formica, M., Fusi, V., Giorgi, L., & Micheloni, M. (2012). New fluorescent chemosensors for metal ions in solution. Coordination Chemistry Reviews, 256(1-2), 170-192. doi:10.1016/j.ccr.2011.09.010 es_ES
dc.description.references Pallavicini, P., Diaz-Fernandez, Y. A., & Pasotti, L. (2009). Micelles as nanosized containers for the self-assembly of multicomponent fluorescent sensors. Coordination Chemistry Reviews, 253(17-18), 2226-2240. doi:10.1016/j.ccr.2008.11.010 es_ES
dc.description.references Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421e es_ES
dc.description.references Moragues, M. E., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews, 40(5), 2593. doi:10.1039/c0cs00015a es_ES
dc.description.references Martínez-Máñez, R., Sancenón, F., Biyikal, M., Hecht, M., & Rurack, K. (2011). Mimicking tricks from nature with sensory organic–inorganic hybrid materials. Journal of Materials Chemistry, 21(34), 12588. doi:10.1039/c1jm11210d es_ES
dc.description.references Martínez-Máñez, R., & Sancenón, F. (2006). Chemodosimeters and 3D inorganic functionalised hosts for the fluoro-chromogenic sensing of anions. Coordination Chemistry Reviews, 250(23-24), 3081-3093. doi:10.1016/j.ccr.2006.04.016 es_ES
dc.description.references Davis, A. P. (2006). Anion binding and transport by steroid-based receptors. Coordination Chemistry Reviews, 250(23-24), 2939-2951. doi:10.1016/j.ccr.2006.05.008 es_ES
dc.description.references García-España, E., Díaz, P., Llinares, J. M., & Bianchi, A. (2006). Anion coordination chemistry in aqueous solution of polyammonium receptors. Coordination Chemistry Reviews, 250(23-24), 2952-2986. doi:10.1016/j.ccr.2006.05.018 es_ES
dc.description.references Katayev, E. A., Ustynyuk, Y. A., & Sessler, J. L. (2006). Receptors for tetrahedral oxyanions. Coordination Chemistry Reviews, 250(23-24), 3004-3037. doi:10.1016/j.ccr.2006.04.013 es_ES
dc.description.references Lloris, J. M., Martínez-Máñez, R., Padilla-Tosta, M. E., Pardo, T., Soto, J., Beer, P. D., … Smith, D. K. (1999). Cyclic and open-chain aza–oxa ferrocene-functionalised derivatives as receptors for the selective electrochemical sensing of toxic heavy metal ions in aqueous environments. Journal of the Chemical Society, Dalton Transactions, (14), 2359-2370. doi:10.1039/a902008j es_ES
dc.description.references García-Acosta, B., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., Spieles, M., … Gil, L. (2007). Ditopic N-Crowned 4-(p-Aminophenyl)-2,6-diphenylpyridines:  Implications of Macrocycle Topology on the Spectroscopic Properties, Cation Complexation, and Differential Anion Responses. Inorganic Chemistry, 46(8), 3123-3135. doi:10.1021/ic062069z es_ES
dc.description.references Gale, P. A. (2006). Structural and Molecular Recognition Studies with Acyclic Anion Receptors†. Accounts of Chemical Research, 39(7), 465-475. doi:10.1021/ar040237q es_ES
dc.description.references Yoon, J., Kim, S. K., Singh, N. J., & Kim, K. S. (2006). Imidazolium receptors for the recognition of anions. Chemical Society Reviews, 35(4), 355. doi:10.1039/b513733k es_ES
dc.description.references Blondeau, P., Segura, M., Pérez-Fernández, R., & de Mendoza, J. (2007). Molecular recognition of oxoanions based on guanidinium receptors. Chem. Soc. Rev., 36(2), 198-210. doi:10.1039/b603089k es_ES
dc.description.references Li, F., Carvalho, S., Delgado, R., Drew, M. G. B., & Félix, V. (2010). Dimetallic complexes of macrocycles with two rigid dibenzofuran units as receptors for detection of anionic substrates. Dalton Transactions, 39(40), 9579. doi:10.1039/c0dt00340a es_ES
dc.description.references Lin, Y.-S., Tu, G.-M., Lin, C.-Y., Chang, Y.-T., & Yen, Y.-P. (2009). Colorimetric anion chemosensors based on anthraquinone: naked-eye detection of isomeric dicarboxylate and tricarboxylate anions. New Journal of Chemistry, 33(4), 860. doi:10.1039/b811172c es_ES
dc.description.references Lin, Y.-S., Zheng, J.-X., Tsui, Y.-K., & Yen, Y.-P. (2011). Colorimetric detection of cyanide with phenyl thiourea derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1552-1558. doi:10.1016/j.saa.2011.04.087 es_ES
dc.description.references Odago, M. O., Colabello, D. M., & Lees, A. J. (2010). A simple thiourea based colorimetric sensor for cyanide anion. Tetrahedron, 66(38), 7465-7471. doi:10.1016/j.tet.2010.07.006 es_ES
dc.description.references Gale, P. A., García-Garrido, S. E., & Garric, J. (2008). Anion receptors based on organic frameworks: highlights from 2005 and 2006. Chem. Soc. Rev., 37(1), 151-190. doi:10.1039/b715825d es_ES
dc.description.references Devaraj, S., Saravanakumar, D., & Kandaswamy, M. (2009). Dual responsive chemosensors for anion and cation: Synthesis and studies of selective chemosensor for F− and Cu(II) ions. Sensors and Actuators B: Chemical, 136(1), 13-19. doi:10.1016/j.snb.2008.11.018 es_ES
dc.description.references Li, Z., Wu, F.-Y., Guo, L., Li, A.-F., & Jiang, Y.-B. (2008). Enhanced Anion Binding ofN-(Anilino)thioureas. Contribution of theN-Anilino −NH Proton Acidity. The Journal of Physical Chemistry B, 112(23), 7071-7079. doi:10.1021/jp801531w es_ES
dc.description.references Ros-Lis, J. V., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Weißhoff, H. (2007). Signalling Mechanisms in Anion-Responsive Push-Pull Chromophores: The Hydrogen-Bonding, Deprotonation and Anion-Exchange Chemistry of Functionalized Azo Dyes. European Journal of Organic Chemistry, 2007(15), 2449-2458. doi:10.1002/ejoc.200601111 es_ES
dc.description.references Krishnamurthi, J., Ono, T., Amemori, S., Komatsu, H., Shinkai, S., & Sada, K. (2011). Thiourea-tagged poly(octadecyl acrylate) gels as fluoride and acetate responsive polymer gels through selective complexation. Chem. Commun., 47(5), 1571-1573. doi:10.1039/c0cc03256e es_ES
dc.description.references Piątek, P. (2011). A selective chromogenic chemosensor for carboxylate salt recognition. Chemical Communications, 47(16), 4745. doi:10.1039/c0cc05537a es_ES
dc.description.references He, X., Herranz, F., Cheng, E. C.-C., Vilar, R., & Yam, V. W.-W. (2010). Design, Synthesis, Photophysics, and Anion-Binding Studies of Bis(dicyclohexylphosphino)methane-Containing Dinuclear Gold(I) Thiolate Complexes with Urea Receptors. Chemistry - A European Journal, 16(30), 9123-9131. doi:10.1002/chem.201000647 es_ES
dc.description.references Esteban-Gómez, D., Fabbrizzi, L., & Licchelli, M. (2005). Why, on Interaction of Urea-Based Receptors with Fluoride, Beautiful Colors Develop. The Journal of Organic Chemistry, 70(14), 5717-5720. doi:10.1021/jo050528s es_ES
dc.description.references Evans, L. S., Gale, P. A., Light, M. E., & Quesada, R. (2006). Pyrrolylamidourea based anion receptors. New Journal of Chemistry, 30(7), 1019. doi:10.1039/b603223k es_ES
dc.description.references Evans, L. S., Gale, P. A., Light, M. E., & Quesada, R. (2006). Anion binding vs. deprotonation in colorimetric pyrrolylamidothiourea based anion sensors. Chemical Communications, (9), 965. doi:10.1039/b517308f es_ES
dc.description.references Jakab, G., Tancon, C., Zhang, Z., Lippert, K. M., & Schreiner, P. R. (2012). (Thio)urea Organocatalyst Equilibrium Acidities in DMSO. Organic Letters, 14(7), 1724-1727. doi:10.1021/ol300307c es_ES
dc.description.references Costa, S. P. G., Batista, R. M. F., Cardoso, P., Belsley, M., & Raposo, M. M. M. (2006). 2-Arylthienyl-Substituted 1,3-Benzothiazoles as New Nonlinear Optical Chromophores. European Journal of Organic Chemistry, 2006(17), 3938-3946. doi:10.1002/ejoc.200600059 es_ES
dc.description.references Raposo, M. M. M., Castro, M. C. R., Fonseca, A. M. C., Schellenberg, P., & Belsley, M. (2011). Design, synthesis, and characterization of the electrochemical, nonlinear optical properties, and theoretical studies of novel thienylpyrrole azo dyes bearing benzothiazole acceptor groups. Tetrahedron, 67(29), 5189-5198. doi:10.1016/j.tet.2011.05.053 es_ES
dc.description.references Whitnall, M., Howard, J., Ponka, P., & Richardson, D. R. (2006). A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proceedings of the National Academy of Sciences, 103(40), 14901-14906. doi:10.1073/pnas.0604979103 es_ES
dc.description.references Zhang, H.-J., Qin, X., Liu, K., Zhu, D.-D., Wang, X.-M., & Zhu, H.-L. (2011). Synthesis, antibacterial activities and molecular docking studies of Schiff bases derived from N-(2/4-benzaldehyde-amino) phenyl-N′-phenyl-thiourea. Bioorganic & Medicinal Chemistry, 19(18), 5708-5715. doi:10.1016/j.bmc.2011.06.077 es_ES
dc.description.references Tian, Y., Duan, C., Zhao, C., You, X., Mak, T. C. W., & Zhang, Z. (1997). Synthesis, Crystal Structure, and Second-Order Optical Nonlinearity of Bis(2-chlorobenzaldehyde thiosemicarbazone)cadmium Halides (CdL2X2; X = Br, I). Inorganic Chemistry, 36(6), 1247-1252. doi:10.1021/ic9603870 es_ES
dc.description.references Ramachandran, R., Rani, M., & Kabilan, S. (2009). Design, synthesis and biological evaluation of novel 2-[(2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-ylidene)hydrazono]-1,3-thiazolidin-4-ones as a new class of antimicrobial agents. Bioorganic & Medicinal Chemistry Letters, 19(10), 2819-2823. doi:10.1016/j.bmcl.2009.03.093 es_ES
dc.description.references Raposo, M. M. M., García-Acosta, B., Ábalos, T., Calero, P., Martínez-Máñez, R., Ros-Lis, J. V., & Soto, J. (2010). Synthesis and Study of the Use of Heterocyclic Thiosemicarbazones As Signaling Scaffolding for the Recognition of Anions. The Journal of Organic Chemistry, 75(9), 2922-2933. doi:10.1021/jo100082k es_ES
dc.description.references Amendola, V., Boiocchi, M., Fabbrizzi, L., & Mosca, L. (2008). Metal-Controlled Anion-Binding Tendencies of the Thiourea Unit of Thiosemicarbazones. Chemistry - A European Journal, 14(31), 9683-9696. doi:10.1002/chem.200800801 es_ES
dc.description.references Santos-Figueroa, L. E., Moragues, M. E., Raposo, M. M. M., Batista, R. M. F., Ferreira, R. C. M., Costa, S. P. G., … Ros-Lis, J. V. (2012). Synthesis and evaluation of fluorimetric and colorimetric chemosensors for anions based on (oligo)thienyl-thiosemicarbazones. Tetrahedron, 68(35), 7179-7186. doi:10.1016/j.tet.2012.06.021 es_ES
dc.description.references Mitsch, A., Wißner, P., Silber, K., Haebel, P., Sattler, I., Klebe, G., & Schlitzer, M. (2004). Non-thiol farnesyltransferase inhibitors: N-(4-tolylacetylamino-3-benzoylphenyl)-3-arylfurylacrylic acid amides. Bioorganic & Medicinal Chemistry, 12(17), 4585-4600. doi:10.1016/j.bmc.2004.07.010 es_ES
dc.description.references Aldrey, A., Núñez, C., García, V., Bastida, R., Lodeiro, C., & Macías, A. (2010). Anion sensing properties of new colorimetric chemosensors based on macrocyclic ligands bearing three nitrophenylurea groups. Tetrahedron, 66(47), 9223-9230. doi:10.1016/j.tet.2010.09.054 es_ES
dc.description.references Atta, A. K., Ahn, I.-H., Hong, A.-Y., Heo, J., Kim, C. K., & Cho, D.-G. (2012). Fluoride indicator that functions in mixed aqueous media: hydrogen bonding effects. Tetrahedron Letters, 53(5), 575-578. doi:10.1016/j.tetlet.2011.11.099 es_ES
dc.description.references Amendola, V., Fabbrizzi, L., Mosca, L., & Schmidtchen, F.-P. (2011). Urea-, Squaramide-, and Sulfonamide-Based Anion Receptors: A Thermodynamic Study. Chemistry - A European Journal, 17(21), 5972-5981. doi:10.1002/chem.201003411 es_ES
dc.description.references Amendola, V., Bergamaschi, G., Boiocchi, M., Fabbrizzi, L., & Milani, M. (2010). The Squaramide versus Urea Contest for Anion Recognition. Chemistry - A European Journal, 16(14), 4368-4380. doi:10.1002/chem.200903190 es_ES
dc.description.references Kim, T. H., Choi, M. S., Sohn, B.-H., Park, S.-Y., Lyoo, W. S., & Lee, T. S. (2008). Gelation-induced fluorescence enhancement of benzoxazole-based organogel and its naked-eye fluoride detection. Chemical Communications, (20), 2364. doi:10.1039/b800813b es_ES
dc.description.references Amendola, V., & Fabbrizzi, L. (2009). Anion receptors that contain metals as structural units. Chem. Commun., (5), 513-531. doi:10.1039/b808264m es_ES
dc.description.references Caltagirone, C., Mulas, A., Isaia, F., Lippolis, V., Gale, P. A., & Light, M. E. (2009). Metal-induced pre-organisation for anion recognition in a neutral platinum-containing receptor. Chemical Communications, (41), 6279. doi:10.1039/b912942a es_ES
dc.description.references Pérez-Casas, C., & Yatsimirsky, A. K. (2008). Detailing Hydrogen Bonding and Deprotonation Equilibria between Anions and Urea/Thiourea Derivatives. The Journal of Organic Chemistry, 73(6), 2275-2284. doi:10.1021/jo702458f es_ES
dc.description.references Dos Santos, C. M. G., McCabe, T., Watson, G. W., Kruger, P. E., & Gunnlaugsson, T. (2008). The Recognition and Sensing of Anions through «Positive Allosteric Effects» Using Simple Urea−Amide Receptors. The Journal of Organic Chemistry, 73(23), 9235-9244. doi:10.1021/jo8014424 es_ES
dc.description.references Dydio, P., Zieliński, T., & Jurczak, J. (2009). Bishydrazide Derivatives of Isoindoline as Simple Anion Receptors. The Journal of Organic Chemistry, 74(4), 1525-1530. doi:10.1021/jo802288u es_ES
dc.description.references Xu, Z., Kim, S. K., Han, S. J., Lee, C., Kociok-Kohn, G., James, T. D., & Yoon, J. (2009). Ratiometric Fluorescence Sensing of Fluoride Ions by an Asymmetric Bidentate Receptor Containing a Boronic Acid and Imidazolium Group. European Journal of Organic Chemistry, 2009(18), 3058-3065. doi:10.1002/ejoc.200900120 es_ES
dc.description.references Amendola, V., Esteban-Gómez, D., Fabbrizzi, L., & Licchelli, M. (2006). What Anions Do to N−H-Containing Receptors. Accounts of Chemical Research, 39(5), 343-353. doi:10.1021/ar050195l es_ES
dc.description.references Boiocchi, M., Del Boca, L., Gómez, D. E., Fabbrizzi, L., Licchelli, M., & Monzani, E. (2004). Nature of Urea−Fluoride Interaction:  Incipient and Definitive Proton Transfer. Journal of the American Chemical Society, 126(50), 16507-16514. doi:10.1021/ja045936c es_ES
dc.description.references Boiocchi, M., Del Boca, L., Esteban-Gómez, D., Fabbrizzi, L., Licchelli, M., & Monzani, E. (2005). Anion-Induced Urea Deprotonation. Chemistry - A European Journal, 11(10), 3097-3104. doi:10.1002/chem.200401049 es_ES
dc.description.references Gómez, D. E., Fabbrizzi, L., Licchelli, M., & Monzani, E. (2005). Urea vs. thiourea in anion recognition. Org. Biomol. Chem., 3(8), 1495-1500. doi:10.1039/b500123d es_ES
dc.description.references Bonizzoni, M., Fabbrizzi, L., Taglietti, A., & Tiengo, F. (2006). (Benzylideneamino)thioureas – Chromogenic Interactions with Anions and N–H Deprotonation. European Journal of Organic Chemistry, 2006(16), 3567-3574. doi:10.1002/ejoc.200600388 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem