- -

Synthesis and evaluation of thiosemicarbazones functionalized with furylmoieties as new chemosensors for anion recognition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis and evaluation of thiosemicarbazones functionalized with furylmoieties as new chemosensors for anion recognition

Mostrar el registro completo del ítem

Santos Figueroa, LE.; Moragues Pons, ME.; Raposo, MMM.; Batista, RM.; Costa, SPG.; Ferreira, RCM.; Sancenón Galarza, F.... (2012). Synthesis and evaluation of thiosemicarbazones functionalized with furylmoieties as new chemosensors for anion recognition. Organic and Biomolecular Chemistry. 10(36):7418-7428. https://doi.org/10.1039/c2ob26200b

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37361

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis and evaluation of thiosemicarbazones functionalized with furylmoieties as new chemosensors for anion recognition
Autor: Santos Figueroa, Luis Enrique Moragues Pons, María Esperanza Raposo, M. Manuela M. Batista, Rosa M.F. Costa, Susana P. G. Ferreira, R. Cristina M. Sancenón Galarza, Félix Martínez Mañez, Ramón Ros-Lis, José Vicente Soto Camino, Juan
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
A family of heterocyclic thiosemicarbazone dyes (3a-f and 4) containing furyl groups was synthesized in good yields, characterized and their response in acetonitrile in the presence of selected anions was studied. Acetonitrile ...[+]
Palabras clave: Acetate anions , Acetonitrile solutions , Anion recognition , Chemo-sensors , Dihydrogen phosphate , Electron donors , Emission bands , Fluorescence studies , Heterocyclic systems , Hydrogen bonding interactions , Hydrogen sulphate , Red-shifted emission , Spectrophotometric titrations , Thiosemicarbazones , Bromine compounds , Chlorine compounds , Cyanides , Deprotonation , Hydrogen bonds , Phenols , Thioureas , Volatile fatty acids , Negative ions
Derechos de uso: Reserva de todos los derechos
Fuente:
Organic and Biomolecular Chemistry. (issn: 1477-0520 )
DOI: 10.1039/c2ob26200b
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/doi:10.1039/c2ob26200b
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-01/ES/Nanomateriales Hibridos Para El Desarrollo De "Puertas Moleculares" De Aplicacion En Procesos De Reconocimiento Y Terapeutica Y Para La Deteccion De Explosivos./
info:eu-repo/grantAgreement/FCT/SFRH/SFRH/BPD/79333/2011/PT/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/
info:eu-repo/grantAgreement/FCT//PEst-C/QUI/UI0686/2011/
info:eu-repo/grantAgreement/FCT//F-COMP-01-0124-FEDER-022716/
Agradecimientos:
We thank the Spanish Government (project MAT2009-14564-C04-01) and the Generalitat Valenciana (project PROMETEO/2009/016) for support. We are also grateful to the Fundacao para a Ciencia e Tecnologia (Portugal) and ...[+]
Tipo: Artículo

References

Basabe-Desmonts, L., Reinhoudt, D. N., & Crego-Calama, M. (2007). Design of fluorescent materials for chemical sensing. Chemical Society Reviews, 36(6), 993. doi:10.1039/b609548h

Martínez-Máñez, R., Sancenón, F., Hecht, M., Biyikal, M., & Rurack, K. (2010). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry, 399(1), 55-74. doi:10.1007/s00216-010-4198-2

Karuppannan, S., & Chambron, J.-C. (2011). Supramolecular Chemical Sensors Based on Pyrene Monomer-Excimer Dual Luminescence. Chemistry - An Asian Journal, 6(4), 964-984. doi:10.1002/asia.201000724 [+]
Basabe-Desmonts, L., Reinhoudt, D. N., & Crego-Calama, M. (2007). Design of fluorescent materials for chemical sensing. Chemical Society Reviews, 36(6), 993. doi:10.1039/b609548h

Martínez-Máñez, R., Sancenón, F., Hecht, M., Biyikal, M., & Rurack, K. (2010). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry, 399(1), 55-74. doi:10.1007/s00216-010-4198-2

Karuppannan, S., & Chambron, J.-C. (2011). Supramolecular Chemical Sensors Based on Pyrene Monomer-Excimer Dual Luminescence. Chemistry - An Asian Journal, 6(4), 964-984. doi:10.1002/asia.201000724

Amendola, V., Bonizzoni, M., Esteban-Gómez, D., Fabbrizzi, L., Licchelli, M., Sancenón, F., & Taglietti, A. (2006). Some guidelines for the design of anion receptors. Coordination Chemistry Reviews, 250(11-12), 1451-1470. doi:10.1016/j.ccr.2006.01.006

Suksai, C., & Tuntulani, T. (2003). Chromogenic anion sensors. Chemical Society Reviews, 32(4), 192. doi:10.1039/b209598j

Nolan, E. M., & Lippard, S. J. (2008). Tools and Tactics for the Optical Detection of Mercuric Ion. Chemical Reviews, 108(9), 3443-3480. doi:10.1021/cr068000q

Formica, M., Fusi, V., Giorgi, L., & Micheloni, M. (2012). New fluorescent chemosensors for metal ions in solution. Coordination Chemistry Reviews, 256(1-2), 170-192. doi:10.1016/j.ccr.2011.09.010

Pallavicini, P., Diaz-Fernandez, Y. A., & Pasotti, L. (2009). Micelles as nanosized containers for the self-assembly of multicomponent fluorescent sensors. Coordination Chemistry Reviews, 253(17-18), 2226-2240. doi:10.1016/j.ccr.2008.11.010

Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421e

Moragues, M. E., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews, 40(5), 2593. doi:10.1039/c0cs00015a

Martínez-Máñez, R., Sancenón, F., Biyikal, M., Hecht, M., & Rurack, K. (2011). Mimicking tricks from nature with sensory organic–inorganic hybrid materials. Journal of Materials Chemistry, 21(34), 12588. doi:10.1039/c1jm11210d

Martínez-Máñez, R., & Sancenón, F. (2006). Chemodosimeters and 3D inorganic functionalised hosts for the fluoro-chromogenic sensing of anions. Coordination Chemistry Reviews, 250(23-24), 3081-3093. doi:10.1016/j.ccr.2006.04.016

Davis, A. P. (2006). Anion binding and transport by steroid-based receptors. Coordination Chemistry Reviews, 250(23-24), 2939-2951. doi:10.1016/j.ccr.2006.05.008

García-España, E., Díaz, P., Llinares, J. M., & Bianchi, A. (2006). Anion coordination chemistry in aqueous solution of polyammonium receptors. Coordination Chemistry Reviews, 250(23-24), 2952-2986. doi:10.1016/j.ccr.2006.05.018

Katayev, E. A., Ustynyuk, Y. A., & Sessler, J. L. (2006). Receptors for tetrahedral oxyanions. Coordination Chemistry Reviews, 250(23-24), 3004-3037. doi:10.1016/j.ccr.2006.04.013

Lloris, J. M., Martínez-Máñez, R., Padilla-Tosta, M. E., Pardo, T., Soto, J., Beer, P. D., … Smith, D. K. (1999). Cyclic and open-chain aza–oxa ferrocene-functionalised derivatives as receptors for the selective electrochemical sensing of toxic heavy metal ions in aqueous environments. Journal of the Chemical Society, Dalton Transactions, (14), 2359-2370. doi:10.1039/a902008j

García-Acosta, B., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., Spieles, M., … Gil, L. (2007). Ditopic N-Crowned 4-(p-Aminophenyl)-2,6-diphenylpyridines:  Implications of Macrocycle Topology on the Spectroscopic Properties, Cation Complexation, and Differential Anion Responses. Inorganic Chemistry, 46(8), 3123-3135. doi:10.1021/ic062069z

Gale, P. A. (2006). Structural and Molecular Recognition Studies with Acyclic Anion Receptors†. Accounts of Chemical Research, 39(7), 465-475. doi:10.1021/ar040237q

Yoon, J., Kim, S. K., Singh, N. J., & Kim, K. S. (2006). Imidazolium receptors for the recognition of anions. Chemical Society Reviews, 35(4), 355. doi:10.1039/b513733k

Blondeau, P., Segura, M., Pérez-Fernández, R., & de Mendoza, J. (2007). Molecular recognition of oxoanions based on guanidinium receptors. Chem. Soc. Rev., 36(2), 198-210. doi:10.1039/b603089k

Li, F., Carvalho, S., Delgado, R., Drew, M. G. B., & Félix, V. (2010). Dimetallic complexes of macrocycles with two rigid dibenzofuran units as receptors for detection of anionic substrates. Dalton Transactions, 39(40), 9579. doi:10.1039/c0dt00340a

Lin, Y.-S., Tu, G.-M., Lin, C.-Y., Chang, Y.-T., & Yen, Y.-P. (2009). Colorimetric anion chemosensors based on anthraquinone: naked-eye detection of isomeric dicarboxylate and tricarboxylate anions. New Journal of Chemistry, 33(4), 860. doi:10.1039/b811172c

Lin, Y.-S., Zheng, J.-X., Tsui, Y.-K., & Yen, Y.-P. (2011). Colorimetric detection of cyanide with phenyl thiourea derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1552-1558. doi:10.1016/j.saa.2011.04.087

Odago, M. O., Colabello, D. M., & Lees, A. J. (2010). A simple thiourea based colorimetric sensor for cyanide anion. Tetrahedron, 66(38), 7465-7471. doi:10.1016/j.tet.2010.07.006

Gale, P. A., García-Garrido, S. E., & Garric, J. (2008). Anion receptors based on organic frameworks: highlights from 2005 and 2006. Chem. Soc. Rev., 37(1), 151-190. doi:10.1039/b715825d

Devaraj, S., Saravanakumar, D., & Kandaswamy, M. (2009). Dual responsive chemosensors for anion and cation: Synthesis and studies of selective chemosensor for F− and Cu(II) ions. Sensors and Actuators B: Chemical, 136(1), 13-19. doi:10.1016/j.snb.2008.11.018

Li, Z., Wu, F.-Y., Guo, L., Li, A.-F., & Jiang, Y.-B. (2008). Enhanced Anion Binding ofN-(Anilino)thioureas. Contribution of theN-Anilino −NH Proton Acidity. The Journal of Physical Chemistry B, 112(23), 7071-7079. doi:10.1021/jp801531w

Ros-Lis, J. V., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Weißhoff, H. (2007). Signalling Mechanisms in Anion-Responsive Push-Pull Chromophores: The Hydrogen-Bonding, Deprotonation and Anion-Exchange Chemistry of Functionalized Azo Dyes. European Journal of Organic Chemistry, 2007(15), 2449-2458. doi:10.1002/ejoc.200601111

Krishnamurthi, J., Ono, T., Amemori, S., Komatsu, H., Shinkai, S., & Sada, K. (2011). Thiourea-tagged poly(octadecyl acrylate) gels as fluoride and acetate responsive polymer gels through selective complexation. Chem. Commun., 47(5), 1571-1573. doi:10.1039/c0cc03256e

Piątek, P. (2011). A selective chromogenic chemosensor for carboxylate salt recognition. Chemical Communications, 47(16), 4745. doi:10.1039/c0cc05537a

He, X., Herranz, F., Cheng, E. C.-C., Vilar, R., & Yam, V. W.-W. (2010). Design, Synthesis, Photophysics, and Anion-Binding Studies of Bis(dicyclohexylphosphino)methane-Containing Dinuclear Gold(I) Thiolate Complexes with Urea Receptors. Chemistry - A European Journal, 16(30), 9123-9131. doi:10.1002/chem.201000647

Esteban-Gómez, D., Fabbrizzi, L., & Licchelli, M. (2005). Why, on Interaction of Urea-Based Receptors with Fluoride, Beautiful Colors Develop. The Journal of Organic Chemistry, 70(14), 5717-5720. doi:10.1021/jo050528s

Evans, L. S., Gale, P. A., Light, M. E., & Quesada, R. (2006). Pyrrolylamidourea based anion receptors. New Journal of Chemistry, 30(7), 1019. doi:10.1039/b603223k

Evans, L. S., Gale, P. A., Light, M. E., & Quesada, R. (2006). Anion binding vs. deprotonation in colorimetric pyrrolylamidothiourea based anion sensors. Chemical Communications, (9), 965. doi:10.1039/b517308f

Jakab, G., Tancon, C., Zhang, Z., Lippert, K. M., & Schreiner, P. R. (2012). (Thio)urea Organocatalyst Equilibrium Acidities in DMSO. Organic Letters, 14(7), 1724-1727. doi:10.1021/ol300307c

Costa, S. P. G., Batista, R. M. F., Cardoso, P., Belsley, M., & Raposo, M. M. M. (2006). 2-Arylthienyl-Substituted 1,3-Benzothiazoles as New Nonlinear Optical Chromophores. European Journal of Organic Chemistry, 2006(17), 3938-3946. doi:10.1002/ejoc.200600059

Raposo, M. M. M., Castro, M. C. R., Fonseca, A. M. C., Schellenberg, P., & Belsley, M. (2011). Design, synthesis, and characterization of the electrochemical, nonlinear optical properties, and theoretical studies of novel thienylpyrrole azo dyes bearing benzothiazole acceptor groups. Tetrahedron, 67(29), 5189-5198. doi:10.1016/j.tet.2011.05.053

Whitnall, M., Howard, J., Ponka, P., & Richardson, D. R. (2006). A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proceedings of the National Academy of Sciences, 103(40), 14901-14906. doi:10.1073/pnas.0604979103

Zhang, H.-J., Qin, X., Liu, K., Zhu, D.-D., Wang, X.-M., & Zhu, H.-L. (2011). Synthesis, antibacterial activities and molecular docking studies of Schiff bases derived from N-(2/4-benzaldehyde-amino) phenyl-N′-phenyl-thiourea. Bioorganic & Medicinal Chemistry, 19(18), 5708-5715. doi:10.1016/j.bmc.2011.06.077

Tian, Y., Duan, C., Zhao, C., You, X., Mak, T. C. W., & Zhang, Z. (1997). Synthesis, Crystal Structure, and Second-Order Optical Nonlinearity of Bis(2-chlorobenzaldehyde thiosemicarbazone)cadmium Halides (CdL2X2; X = Br, I). Inorganic Chemistry, 36(6), 1247-1252. doi:10.1021/ic9603870

Ramachandran, R., Rani, M., & Kabilan, S. (2009). Design, synthesis and biological evaluation of novel 2-[(2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-ylidene)hydrazono]-1,3-thiazolidin-4-ones as a new class of antimicrobial agents. Bioorganic & Medicinal Chemistry Letters, 19(10), 2819-2823. doi:10.1016/j.bmcl.2009.03.093

Raposo, M. M. M., García-Acosta, B., Ábalos, T., Calero, P., Martínez-Máñez, R., Ros-Lis, J. V., & Soto, J. (2010). Synthesis and Study of the Use of Heterocyclic Thiosemicarbazones As Signaling Scaffolding for the Recognition of Anions. The Journal of Organic Chemistry, 75(9), 2922-2933. doi:10.1021/jo100082k

Amendola, V., Boiocchi, M., Fabbrizzi, L., & Mosca, L. (2008). Metal-Controlled Anion-Binding Tendencies of the Thiourea Unit of Thiosemicarbazones. Chemistry - A European Journal, 14(31), 9683-9696. doi:10.1002/chem.200800801

Santos-Figueroa, L. E., Moragues, M. E., Raposo, M. M. M., Batista, R. M. F., Ferreira, R. C. M., Costa, S. P. G., … Ros-Lis, J. V. (2012). Synthesis and evaluation of fluorimetric and colorimetric chemosensors for anions based on (oligo)thienyl-thiosemicarbazones. Tetrahedron, 68(35), 7179-7186. doi:10.1016/j.tet.2012.06.021

Mitsch, A., Wißner, P., Silber, K., Haebel, P., Sattler, I., Klebe, G., & Schlitzer, M. (2004). Non-thiol farnesyltransferase inhibitors: N-(4-tolylacetylamino-3-benzoylphenyl)-3-arylfurylacrylic acid amides. Bioorganic & Medicinal Chemistry, 12(17), 4585-4600. doi:10.1016/j.bmc.2004.07.010

Aldrey, A., Núñez, C., García, V., Bastida, R., Lodeiro, C., & Macías, A. (2010). Anion sensing properties of new colorimetric chemosensors based on macrocyclic ligands bearing three nitrophenylurea groups. Tetrahedron, 66(47), 9223-9230. doi:10.1016/j.tet.2010.09.054

Atta, A. K., Ahn, I.-H., Hong, A.-Y., Heo, J., Kim, C. K., & Cho, D.-G. (2012). Fluoride indicator that functions in mixed aqueous media: hydrogen bonding effects. Tetrahedron Letters, 53(5), 575-578. doi:10.1016/j.tetlet.2011.11.099

Amendola, V., Fabbrizzi, L., Mosca, L., & Schmidtchen, F.-P. (2011). Urea-, Squaramide-, and Sulfonamide-Based Anion Receptors: A Thermodynamic Study. Chemistry - A European Journal, 17(21), 5972-5981. doi:10.1002/chem.201003411

Amendola, V., Bergamaschi, G., Boiocchi, M., Fabbrizzi, L., & Milani, M. (2010). The Squaramide versus Urea Contest for Anion Recognition. Chemistry - A European Journal, 16(14), 4368-4380. doi:10.1002/chem.200903190

Kim, T. H., Choi, M. S., Sohn, B.-H., Park, S.-Y., Lyoo, W. S., & Lee, T. S. (2008). Gelation-induced fluorescence enhancement of benzoxazole-based organogel and its naked-eye fluoride detection. Chemical Communications, (20), 2364. doi:10.1039/b800813b

Amendola, V., & Fabbrizzi, L. (2009). Anion receptors that contain metals as structural units. Chem. Commun., (5), 513-531. doi:10.1039/b808264m

Caltagirone, C., Mulas, A., Isaia, F., Lippolis, V., Gale, P. A., & Light, M. E. (2009). Metal-induced pre-organisation for anion recognition in a neutral platinum-containing receptor. Chemical Communications, (41), 6279. doi:10.1039/b912942a

Pérez-Casas, C., & Yatsimirsky, A. K. (2008). Detailing Hydrogen Bonding and Deprotonation Equilibria between Anions and Urea/Thiourea Derivatives. The Journal of Organic Chemistry, 73(6), 2275-2284. doi:10.1021/jo702458f

Dos Santos, C. M. G., McCabe, T., Watson, G. W., Kruger, P. E., & Gunnlaugsson, T. (2008). The Recognition and Sensing of Anions through «Positive Allosteric Effects» Using Simple Urea−Amide Receptors. The Journal of Organic Chemistry, 73(23), 9235-9244. doi:10.1021/jo8014424

Dydio, P., Zieliński, T., & Jurczak, J. (2009). Bishydrazide Derivatives of Isoindoline as Simple Anion Receptors. The Journal of Organic Chemistry, 74(4), 1525-1530. doi:10.1021/jo802288u

Xu, Z., Kim, S. K., Han, S. J., Lee, C., Kociok-Kohn, G., James, T. D., & Yoon, J. (2009). Ratiometric Fluorescence Sensing of Fluoride Ions by an Asymmetric Bidentate Receptor Containing a Boronic Acid and Imidazolium Group. European Journal of Organic Chemistry, 2009(18), 3058-3065. doi:10.1002/ejoc.200900120

Amendola, V., Esteban-Gómez, D., Fabbrizzi, L., & Licchelli, M. (2006). What Anions Do to N−H-Containing Receptors. Accounts of Chemical Research, 39(5), 343-353. doi:10.1021/ar050195l

Boiocchi, M., Del Boca, L., Gómez, D. E., Fabbrizzi, L., Licchelli, M., & Monzani, E. (2004). Nature of Urea−Fluoride Interaction:  Incipient and Definitive Proton Transfer. Journal of the American Chemical Society, 126(50), 16507-16514. doi:10.1021/ja045936c

Boiocchi, M., Del Boca, L., Esteban-Gómez, D., Fabbrizzi, L., Licchelli, M., & Monzani, E. (2005). Anion-Induced Urea Deprotonation. Chemistry - A European Journal, 11(10), 3097-3104. doi:10.1002/chem.200401049

Gómez, D. E., Fabbrizzi, L., Licchelli, M., & Monzani, E. (2005). Urea vs. thiourea in anion recognition. Org. Biomol. Chem., 3(8), 1495-1500. doi:10.1039/b500123d

Bonizzoni, M., Fabbrizzi, L., Taglietti, A., & Tiengo, F. (2006). (Benzylideneamino)thioureas – Chromogenic Interactions with Anions and N–H Deprotonation. European Journal of Organic Chemistry, 2006(16), 3567-3574. doi:10.1002/ejoc.200600388

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem