Tortajada Velert, S.; Fuster García, E.; Vicente Robledo, J.; Wesseling, P.; Howe, F.; Julià-Sapé, M.; Candiota, A.... (2011). Incremental gaussian discriminant analysis based on graybill and deal weighted combination of estimators for brain tumour diagnosis. Journal of Biomedical Informatics. 44(4):677-687. https://doi.org/10.1016/j.jbi.2011.02.009
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37477
Título:
|
Incremental gaussian discriminant analysis based on graybill and deal weighted combination of estimators for brain tumour diagnosis
|
Autor:
|
Tortajada Velert, Salvador
Fuster García, Elíes
Vicente Robledo, Javier
Wesseling, Pieter
Howe, Franklyn
Julià-Sapé, Margarida
Candiota, Ana-Paula
Monleón, Daniel
Moreno-Torres, Àngel
Pujol, Jesús
Griffiths, Jonh R.
Wright, Alan
Peet, Andrew C.
Martínez-Bisbal, M. Carmen
Celda, Bernardo
Arús, Carles
Robles Viejo, Montserrat
García Gómez, Juan Miguel
|
Entidad UPV:
|
Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
|
Fecha difusión:
|
|
Resumen:
|
In the last decade, machine learning (ML) techniques have been used for developing classifiers for automatic brain tumour diagnosis. However, the development of these ML models rely on a unique training set and learning ...[+]
In the last decade, machine learning (ML) techniques have been used for developing classifiers for automatic brain tumour diagnosis. However, the development of these ML models rely on a unique training set and learning stops once this set has been processed. Training these classifiers requires a representative amount of data, but the gathering, preprocess, and validation of samples is expensive and time-consuming. Therefore, for a classical, non-incremental approach to ML, it is necessary to wait long enough to collect all the required data. In contrast, an incremental learning approach may allow us to build an initial classifier with a smaller number of samples and update it incrementally when new data are collected. In this study, an incremental learning algorithm for Gaussian Discriminant Analysis (iGDA) based on the Graybill and Deal weighted combination of estimators is introduced. Each time a new set of data becomes available, a new estimation is carried out and a combination with a previous estimation is performed. iGDA does not require access to the previously used data and is able to include new classes that were not in the original analysis, thus allowing the customization of the models to the distribution of data at a particular clinical center. An evaluation using five benchmark databases has been used to evaluate the behaviour of the iGDA algorithm in terms of stability-plasticity, class inclusion and order effect. Finally, the iGDA algorithm has been applied to automatic brain tumour classification with magnetic resonance spectroscopy, and compared with two state-of-the-art incremental algorithms. The empirical results obtained show the ability of the algorithm to learn in an incremental fashion, improving the performance of the models when new information is available, and converging in the course of time. Furthermore, the algorithm shows a negligible instance and concept order effect, avoiding the bias that such effects could introduce. © 2011 Elsevier Inc.
[-]
|
Palabras clave:
|
Machine learning
,
Incremental learning
,
Graybill-Deal estimator
,
Automatic brain tumour diagnosis
,
Magnetic resonance
,
Brain tumours
,
Empirical results
,
Gaussians
,
Incremental algorithm
,
Number of samples
,
Preprocess
,
Training sets
,
Discriminant analysis
,
Estimation
,
Magnetic resonance spectroscopy
|
Derechos de uso:
|
Reserva de todos los derechos
|
Fuente:
|
Journal of Biomedical Informatics. (issn:
1532-0464
)
|
DOI:
|
10.1016/j.jbi.2011.02.009
|
Editorial:
|
Elsevier
|
Versión del editor:
|
http://dx.doi.org/10.1016/j.jbi.2011.02.009
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/MICINN//RD07%2F0067%2F2001/ES/RED TEMÁTICA DE INVESTIGACIÓN COOPERATIVA EN BIOMEDICINA COMPUTACIONAL/ /
info:eu-repo/grantAgreement/MEC//PTQ05-02-03386/ES/PTQ05-02-03386/
info:eu-repo/grantAgreement/MICINN//PTQ-08-01-06802/ES/PTQ-08-01-06802/
|
Agradecimientos:
|
This work has been partially funded by the Spanish Institut de Salud Carlos III (ISCiii) through the RETICS Combiomed (RD07/0067/2001). The authors thank the Programa Torres Quevedo from Ministerio de Educacion y Ciencia, ...[+]
This work has been partially funded by the Spanish Institut de Salud Carlos III (ISCiii) through the RETICS Combiomed (RD07/0067/2001). The authors thank the Programa Torres Quevedo from Ministerio de Educacion y Ciencia, co-founded by the European Social Fund (PTQ05-02-03386 and PTQ08-01-06802). We thank eTUMOUR, HEALTHAGENTS and INTERPRET partners for providing data, in particular W. Gajewicz (MUL), J. Calvar (FLENI), A. Heerschap (RUNMC), J. Capellades (IDI-Badalona), C. Majos (IDI-Bellvitge), and W. Semmier (DKFZ-Heidelberg). CIBER-BBN is an initiative funded by the VI National R&D&D&I Plan 2008-2011, CIBER Actions are financed by the Institut de Salud Carlos III with assistance from the European Regional Development Fund.
[-]
|
Tipo:
|
Artículo
|