- -

Effect of topological cues on material-driven fibronectinfibrillogenesis and cell differentiation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of topological cues on material-driven fibronectinfibrillogenesis and cell differentiation

Mostrar el registro completo del ítem

Ballester Beltrán, J.; Cantini, M.; Lebourg, MM.; Rico Tortosa, PM.; Moratal Pérez, D.; García, AJ.; Salmerón Sánchez, M. (2012). Effect of topological cues on material-driven fibronectinfibrillogenesis and cell differentiation. Journal of Materials Science: Materials in Medicine. 23(1):195-204. https://doi.org/10.1007/s10856-011-4532-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37481

Ficheros en el ítem

Metadatos del ítem

Título: Effect of topological cues on material-driven fibronectinfibrillogenesis and cell differentiation
Autor: Ballester Beltrán, José Cantini, Marco Lebourg, Myriam Madeleine Rico Tortosa, Patricia María Moratal Pérez, David García, Andrés J. Salmerón Sánchez, Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Fibronectin (FN) assembles into fibrillar networks by cells through an integrin-dependent mechanism. We have recently shown that simple FN adsorption onto poly(ethyl acrylate) surfaces (PEA), but not control polymer ...[+]
Palabras clave: Biological activities , Cell differentiation , Differentiated cells , Differentiation process , Electrospun fibers , Electrospuns , Fibrillar networks , Fibrillogenesis , Material chemistry , Material interfaces , Poly (ethyl acrylate) , Poly(methyl acrylate) , Smooth surface , Adsorption , Biological materials , Electrospinning , Molecules , Surfaces , Topology , Interfaces (materials) , Acrylic acid , Fibronectin , Poly(methyl methacrylate) , Animal cell , Conference paper , Membrane structure , Nonhuman , Priority journal , Protein assembly , Surface property , Animals , Biocompatible Materials , Cell Line , Fibronectins , Mice , Microscopy, Atomic Force , Microscopy, Electron, Scanning
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Materials Science: Materials in Medicine. (issn: 0957-4530 )
DOI: 10.1007/s10856-011-4532-z
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s10856-011-4532-z
Título del congreso: 24th Annual European Conference on Biomaterials of the European-Society-for-Biomaterials (ESB)
Lugar del congreso: Dublín, Ireland
Fecha congreso: September 04-08, 2011
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-01/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/
Agradecimientos:
The support of the Spanish Ministry of Science and Innovation through project MAT2009-14440-C02-01 is acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, ...[+]
Tipo: Artículo Comunicación en congreso

References

Singh P, Carraher C, Schwarzbauer JE. Assembly of fibronectin extracellular matrix. Ann Rev Cell Dev Biol. 2010;26:397–419.

Hynes RO. Fibronectins springer series in molecular biology. New York: Springer; 1990.

Mao Y, Schwarzbauer JE. FN fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 2005;24:389–99. [+]
Singh P, Carraher C, Schwarzbauer JE. Assembly of fibronectin extracellular matrix. Ann Rev Cell Dev Biol. 2010;26:397–419.

Hynes RO. Fibronectins springer series in molecular biology. New York: Springer; 1990.

Mao Y, Schwarzbauer JE. FN fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 2005;24:389–99.

Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane extracellular matrix–cytoskeleton crosstalk. Natl Rev Mol Cell Biol. 2001;2:793–805.

Sakai K, Fujii T, Hayashi T. Cell-free formation of disulfide-bonded multimer from isolated plasma fibronectin in the presence of a low concentration of SH reagent under a physiological condition. J Biochem. 1994;115:415–21.

Vartio T. Disulfide-bonded polymerization of plasma fibronectin in the presence of metal ions. J Biol Chem. 1986;261:9433–7.

Mosher DF, Johnson RB. In vitro formation of disulfide-bonded fibronectin multimers. J Biol Chem. 1983;258:6595–601.

Vuento M, Vartio T, Saraste M, von Bonsdorff CH, Vaheri A. Spontaneous and polyamine-induced formation of filamentous polymers from soluble fibronectin. Eur J Biochem. 1980;105:33–42.

Richter H, Wendt C, Hörmann H. Aggregation and fibril formation of plasma fibronectin by heparin. Biol Chem Hoppe-Seyler. 1985;366:509–14.

Morla A, Zhang Z, Ruoslahti E. Superfibronectin is a functionally distinct form of fibronectin. Nature. 1994;367:193–6.

Baneyx G, Vogel V. Self-assembly of fibronectin into fibrillar networks underneath dipalmitoylphosphatidylcholine monolayers: role of lipid matrix and tensile forces. Proc Natl Acad Sci USA. 1999;96:12518–23.

Ulmer J, Geiger B, Spatz JP. Force-induced fibronectin fibrillogenesis in vitro. Soft Matter. 2008;4:1998–2007.

Brown RA, Blunn GW, Ejim OS. Preparation of orientated fibrous mats from fibronectin: composition and stability. Biomaterials. 1994;15:457–64.

Little WC, Smith ML, Ebneter U, Vogel V. Assay to mechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage. Matrix Biol. 2008;27:451–61.

Klotzsch E, Smith ML, Kubow KE, Muntwyler S, Little WC, Beyeler F, Gourdon D, Nelson BJ, Vogel V. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc Natl Acad Sci USA. 2009;106:18267–72.

Rico P, Rodríguez Hernández JC, Moratal D, Altankov G, Monleón Pradas M, Salmerón-Sánchez M. Substrate-induced assembly of fibronectin into networks: influence of surface chemistry and effect on osteoblast adhesion. Tissue Eng Part A. 2009;15:3271–81.

Gugutkov D, González-García C, Rodríguez Hernández JC, Altankov G, Salmerón-Sánchez M. Biological activity of the substrate-induced FN network: insight into the third dimension through electrospun fibers. Langmuir. 2009;25:10893–900.

Salmerón-Sánchez M, Rico P, Moratal D, Lee T, Schwarzbauer J, García AJ. Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials. 2011;32:2099–115.

Sabourin LA, Rudnicki MA. The molecular regulation of myogenesis. Clin Genet. 2000;57:16–25.

Agarwal S, Wendorff J, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49:5603–21.

Sill TJS, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006.

Huber A, Pickett A, Shakesheff KM. Reconstruction of spatially orientated myotubes in vitro using electrospun, parallel microfibre arrays. Eur Cells Mater. 2007;14:56–63.

Jun I, Jeong S, Shin H. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers. Biomaterials. 2009;30:2038–47.

Clark P, Dunn GA, Knibbs A, Peckham M. Alignment of myoblasts on ultrafine gratings inhibits fusion in vitro. Int J Biochem Cell Biol. 2002;34:816–25.

Lam MT, Sim S, Zhu X, Takayama S. The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes. Biomaterials. 2007;27:4340–7.

Altomare L, Gadegaard N, Visai L, Tanzi MC, Farè S. Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development. Acta Biomater. 2010;6:1948–57.

Altomare L, Riehle M, Gadegaard N, Tanzi MC, Farè S. Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation. Int J Artif Organs. 2010;33:535–43.

Neumann T, Hauschka SD, Sanders JE. Tissue engineering of skeletal muscle using polymer fiber arrays. Tissue Eng. 2003;9:995–1003.

Tse JR, Engler A. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One. 2011;6:e15978.

Gómez-Tejedor JA, Van Overberghe N, Rico P, Gómez Ribelles JL. Assessment of the parameters influencing the fiber characteristics of electrospun poly(ethyl methacrylate) membranes. Eur Polym J. 2011;47:119–29.

O’Connell B. Oval Profile Plot. Research Services Branch, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke. Available from: http://rsbweb.nih.gov/ij/plugins/oval-profile.html . Accessed 30 November 2011.

Gugutkov D, Altankov G, Rodríguez Hernández JC, Monleón Pradas M, Salmerón Sánchez M. Fibronectin activity on substrates with controlled–OH density. J Biomed Mater Res. 2010;A92:322–31.

Schwarzbauer JE. Identification of FN sequences required for assembly of a fibrillar matrix. J Cell Biol. 1991;113:1463–73.

Mukhatyar VJ, Salmerón-Sánchez M, Rudra S, Mukhopadaya S, Barker TH, García AJ, Bellamkonda RV. Role of fibronectin in topographical guidance of neurite extension on electrospun fibers. Biomaterials. 2011;32:3958–68.

Wakelam MJ. The fusion of myoblasts. Biochem J. 1985;228:1–12.

Quach NL, Rando TA. Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Dev Biol. 2006;293:38–52.

Charest JL, García AJ, King WP. Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries. Biomaterials. 2007;28:2202–10.

Berendse M, Grounds MD, Lloyd CM. Myoblast structure affects subsequent skeletal myotube morphology and sarcomere assembly. Exp Cell Res. 2003;291:435–50.

Li B, Lin M, Tang Y, Wang B, Wang JHC. Novel functional assessment of the differentiation of micropatterned muscle cells. J Biomech. 2008;41:3349–53.

Blunn GW, Brown RA. Production of artificial-oriented mats and strands from plasma fibronectin: a morphological study. Biomaterials. 1993;14:743–8.

Smith JT, Tomfohr JK, Wells MC, Beebe TP, Kepler TB, Reichert WM. Measurement of cell migration on surface-bound fibronectin gradients. Langmuir. 2004;20:8279–86.

Smith JT, Elkin JT, Reichert WM. Directed cell migration on fibronectin gradients: effect of gradient slope. Exp Cell Res. 2006;312:2424–32.

Rhoads DS, Guan JL. Analysis of directional cell migration on defined FN gradients: role of intracellular signaling molecules. Exp Cell Res. 2007;313:3859–67.

Liu L, Ratner BD, Sage EH, Jiang S. Endothelial cell migration on surface-density gradients of fibronectin, VEGF, or both proteins. Langmuir. 2007;23:11168–73.

Shi J, Wang L, Zhang F, Li H, Lei L, Liu L, Chen Y. Incorporating protein gradient into electrospun nanofibres as scaffolds for tissue engineering. ACS Appl Mater Interfaces. 2010;2:1025–30.

Goetsch KP, Kallmeyer K, Niesler CU. Decorin modulates collagen I-stimulated, but not fibronectin-stimulated, migration of C2C12 myoblasts. Matrix Biol. 2011;30:109–17.

Bondesen BA, Jones KA, Glasgow WC, Pavlath GK. Inhibition of myoblast migration by prostacyclin is associated with enhanced cell fusion. FASEB J. 2007;21:3338–45.

Olguin HC, Santander C, Brandan E. Inhibition of myoblast migration via decorin expression is critical for normal skeletal muscle differentiation. Dev Biol. 2003;259:209–24.

Konigsberg IR. Diffusion-mediated control of myoblast fusion. Dev Biol. 1971;26:133–52.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem