Mostrar el registro sencillo del ítem
dc.contributor.author | Ballester Beltrán, José | es_ES |
dc.contributor.author | Cantini, Marco | es_ES |
dc.contributor.author | Lebourg, Myriam Madeleine | es_ES |
dc.contributor.author | Rico Tortosa, Patricia María | es_ES |
dc.contributor.author | Moratal Pérez, David | es_ES |
dc.contributor.author | García, Andrés J. | es_ES |
dc.contributor.author | Salmerón Sánchez, Manuel | es_ES |
dc.date.accessioned | 2014-05-15T06:28:56Z | |
dc.date.issued | 2012-01 | |
dc.identifier.issn | 0957-4530 | |
dc.identifier.uri | http://hdl.handle.net/10251/37481 | |
dc.description.abstract | [EN] Fibronectin (FN) assembles into fibrillar networks by cells through an integrin-dependent mechanism. We have recently shown that simple FN adsorption onto poly(ethyl acrylate) surfaces (PEA), but not control polymer (poly(methyl acrylate), PMA), also triggered FN organization into a physiological fibrillar network. FN fibrils exhibited enhanced biological activities in terms of myogenic differentiation compared to individual FN molecules. In the present study, we investigate the influence of topological cues on the material-driven FN assembly and the myogenic differentiation process. Aligned and random electrospun fibers were prepared. While FN fibrils assembled on the PEA fibers as they do on the smooth surface, the characteristic distribution of globular FN molecules observed on flat PMA transformed into non-connected FN fibrils on electrospun PMA, which significantly enhanced cell differentiation. The direct relationship between the fibrillar organization of FN at the material interface and the myogenic process was further assessed by preparing FN gradients on smooth PEA and PMA films. Isolated FN molecules observed at one edge of the substrate gradually interconnected with each other, eventually forming a fully developed network of FN fibrils on PEA. In contrast, FN adopted a globular-like conformation along the entire length of the PMA surface, and the FN gradient consisted only of increased density of adsorbed FN. Correspondingly, the percentage of differentiated cells increased monotonically along the FN gradient on PEA but not on PMA. This work demonstrates an interplay between material chemistry and topology in modulating material-driven FN fibrillogenesis and cell differentiation. © 2011 Springer Science+Business Media, LLC. | es_ES |
dc.description.sponsorship | The support of the Spanish Ministry of Science and Innovation through project MAT2009-14440-C02-01 is acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. This work was supported by funds for research in the field of Regenerative Medicine through the collaboration agreement from the Conselleria de Sanidad (Generalitat Valenciana), and the Instituto de Salud Carlos III. | |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Journal of Materials Science: Materials in Medicine | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Biological activities | es_ES |
dc.subject | Cell differentiation | es_ES |
dc.subject | Differentiated cells | es_ES |
dc.subject | Differentiation process | es_ES |
dc.subject | Electrospun fibers | es_ES |
dc.subject | Electrospuns | es_ES |
dc.subject | Fibrillar networks | es_ES |
dc.subject | Fibrillogenesis | es_ES |
dc.subject | Material chemistry | es_ES |
dc.subject | Material interfaces | es_ES |
dc.subject | Poly (ethyl acrylate) | es_ES |
dc.subject | Poly(methyl acrylate) | es_ES |
dc.subject | Smooth surface | es_ES |
dc.subject | Adsorption | es_ES |
dc.subject | Biological materials | es_ES |
dc.subject | Electrospinning | es_ES |
dc.subject | Molecules | es_ES |
dc.subject | Surfaces | es_ES |
dc.subject | Topology | es_ES |
dc.subject | Interfaces (materials) | es_ES |
dc.subject | Acrylic acid | es_ES |
dc.subject | Fibronectin | es_ES |
dc.subject | Poly(methyl methacrylate) | es_ES |
dc.subject | Animal cell | es_ES |
dc.subject | Conference paper | es_ES |
dc.subject | Membrane structure | es_ES |
dc.subject | Nonhuman | es_ES |
dc.subject | Priority journal | es_ES |
dc.subject | Protein assembly | es_ES |
dc.subject | Surface property | es_ES |
dc.subject | Animals | es_ES |
dc.subject | Biocompatible Materials | es_ES |
dc.subject | Cell Line | es_ES |
dc.subject | Fibronectins | es_ES |
dc.subject | Mice | es_ES |
dc.subject | Microscopy, Atomic Force | es_ES |
dc.subject | Microscopy, Electron, Scanning | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.subject.classification | TERMODINAMICA APLICADA (UPV) | es_ES |
dc.title | Effect of topological cues on material-driven fibronectinfibrillogenesis and cell differentiation | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1007/s10856-011-4532-z | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-01/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Ballester Beltrán, J.; Cantini, M.; Lebourg, MM.; Rico Tortosa, PM.; Moratal Pérez, D.; García, AJ.; Salmerón Sánchez, M. (2012). Effect of topological cues on material-driven fibronectinfibrillogenesis and cell differentiation. Journal of Materials Science: Materials in Medicine. 23(1):195-204. https://doi.org/10.1007/s10856-011-4532-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 24th Annual European Conference on Biomaterials of the European-Society-for-Biomaterials (ESB) | |
dc.relation.conferencedate | September 04-08, 2011 | |
dc.relation.conferenceplace | Dublín, Ireland | |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10856-011-4532-z | es_ES |
dc.description.upvformatpinicio | 195 | es_ES |
dc.description.upvformatpfin | 204 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 209137 | |
dc.identifier.pmid | 22201030 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.description.references | Singh P, Carraher C, Schwarzbauer JE. Assembly of fibronectin extracellular matrix. Ann Rev Cell Dev Biol. 2010;26:397–419. | es_ES |
dc.description.references | Hynes RO. Fibronectins springer series in molecular biology. New York: Springer; 1990. | es_ES |
dc.description.references | Mao Y, Schwarzbauer JE. FN fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 2005;24:389–99. | es_ES |
dc.description.references | Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane extracellular matrix–cytoskeleton crosstalk. Natl Rev Mol Cell Biol. 2001;2:793–805. | es_ES |
dc.description.references | Sakai K, Fujii T, Hayashi T. Cell-free formation of disulfide-bonded multimer from isolated plasma fibronectin in the presence of a low concentration of SH reagent under a physiological condition. J Biochem. 1994;115:415–21. | es_ES |
dc.description.references | Vartio T. Disulfide-bonded polymerization of plasma fibronectin in the presence of metal ions. J Biol Chem. 1986;261:9433–7. | es_ES |
dc.description.references | Mosher DF, Johnson RB. In vitro formation of disulfide-bonded fibronectin multimers. J Biol Chem. 1983;258:6595–601. | es_ES |
dc.description.references | Vuento M, Vartio T, Saraste M, von Bonsdorff CH, Vaheri A. Spontaneous and polyamine-induced formation of filamentous polymers from soluble fibronectin. Eur J Biochem. 1980;105:33–42. | es_ES |
dc.description.references | Richter H, Wendt C, Hörmann H. Aggregation and fibril formation of plasma fibronectin by heparin. Biol Chem Hoppe-Seyler. 1985;366:509–14. | es_ES |
dc.description.references | Morla A, Zhang Z, Ruoslahti E. Superfibronectin is a functionally distinct form of fibronectin. Nature. 1994;367:193–6. | es_ES |
dc.description.references | Baneyx G, Vogel V. Self-assembly of fibronectin into fibrillar networks underneath dipalmitoylphosphatidylcholine monolayers: role of lipid matrix and tensile forces. Proc Natl Acad Sci USA. 1999;96:12518–23. | es_ES |
dc.description.references | Ulmer J, Geiger B, Spatz JP. Force-induced fibronectin fibrillogenesis in vitro. Soft Matter. 2008;4:1998–2007. | es_ES |
dc.description.references | Brown RA, Blunn GW, Ejim OS. Preparation of orientated fibrous mats from fibronectin: composition and stability. Biomaterials. 1994;15:457–64. | es_ES |
dc.description.references | Little WC, Smith ML, Ebneter U, Vogel V. Assay to mechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage. Matrix Biol. 2008;27:451–61. | es_ES |
dc.description.references | Klotzsch E, Smith ML, Kubow KE, Muntwyler S, Little WC, Beyeler F, Gourdon D, Nelson BJ, Vogel V. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc Natl Acad Sci USA. 2009;106:18267–72. | es_ES |
dc.description.references | Rico P, Rodríguez Hernández JC, Moratal D, Altankov G, Monleón Pradas M, Salmerón-Sánchez M. Substrate-induced assembly of fibronectin into networks: influence of surface chemistry and effect on osteoblast adhesion. Tissue Eng Part A. 2009;15:3271–81. | es_ES |
dc.description.references | Gugutkov D, González-García C, Rodríguez Hernández JC, Altankov G, Salmerón-Sánchez M. Biological activity of the substrate-induced FN network: insight into the third dimension through electrospun fibers. Langmuir. 2009;25:10893–900. | es_ES |
dc.description.references | Salmerón-Sánchez M, Rico P, Moratal D, Lee T, Schwarzbauer J, García AJ. Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials. 2011;32:2099–115. | es_ES |
dc.description.references | Sabourin LA, Rudnicki MA. The molecular regulation of myogenesis. Clin Genet. 2000;57:16–25. | es_ES |
dc.description.references | Agarwal S, Wendorff J, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49:5603–21. | es_ES |
dc.description.references | Sill TJS, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006. | es_ES |
dc.description.references | Huber A, Pickett A, Shakesheff KM. Reconstruction of spatially orientated myotubes in vitro using electrospun, parallel microfibre arrays. Eur Cells Mater. 2007;14:56–63. | es_ES |
dc.description.references | Jun I, Jeong S, Shin H. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers. Biomaterials. 2009;30:2038–47. | es_ES |
dc.description.references | Clark P, Dunn GA, Knibbs A, Peckham M. Alignment of myoblasts on ultrafine gratings inhibits fusion in vitro. Int J Biochem Cell Biol. 2002;34:816–25. | es_ES |
dc.description.references | Lam MT, Sim S, Zhu X, Takayama S. The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes. Biomaterials. 2007;27:4340–7. | es_ES |
dc.description.references | Altomare L, Gadegaard N, Visai L, Tanzi MC, Farè S. Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development. Acta Biomater. 2010;6:1948–57. | es_ES |
dc.description.references | Altomare L, Riehle M, Gadegaard N, Tanzi MC, Farè S. Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation. Int J Artif Organs. 2010;33:535–43. | es_ES |
dc.description.references | Neumann T, Hauschka SD, Sanders JE. Tissue engineering of skeletal muscle using polymer fiber arrays. Tissue Eng. 2003;9:995–1003. | es_ES |
dc.description.references | Tse JR, Engler A. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One. 2011;6:e15978. | es_ES |
dc.description.references | Gómez-Tejedor JA, Van Overberghe N, Rico P, Gómez Ribelles JL. Assessment of the parameters influencing the fiber characteristics of electrospun poly(ethyl methacrylate) membranes. Eur Polym J. 2011;47:119–29. | es_ES |
dc.description.references | O’Connell B. Oval Profile Plot. Research Services Branch, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke. Available from: http://rsbweb.nih.gov/ij/plugins/oval-profile.html . Accessed 30 November 2011. | es_ES |
dc.description.references | Gugutkov D, Altankov G, Rodríguez Hernández JC, Monleón Pradas M, Salmerón Sánchez M. Fibronectin activity on substrates with controlled–OH density. J Biomed Mater Res. 2010;A92:322–31. | es_ES |
dc.description.references | Schwarzbauer JE. Identification of FN sequences required for assembly of a fibrillar matrix. J Cell Biol. 1991;113:1463–73. | es_ES |
dc.description.references | Mukhatyar VJ, Salmerón-Sánchez M, Rudra S, Mukhopadaya S, Barker TH, García AJ, Bellamkonda RV. Role of fibronectin in topographical guidance of neurite extension on electrospun fibers. Biomaterials. 2011;32:3958–68. | es_ES |
dc.description.references | Wakelam MJ. The fusion of myoblasts. Biochem J. 1985;228:1–12. | es_ES |
dc.description.references | Quach NL, Rando TA. Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Dev Biol. 2006;293:38–52. | es_ES |
dc.description.references | Charest JL, García AJ, King WP. Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries. Biomaterials. 2007;28:2202–10. | es_ES |
dc.description.references | Berendse M, Grounds MD, Lloyd CM. Myoblast structure affects subsequent skeletal myotube morphology and sarcomere assembly. Exp Cell Res. 2003;291:435–50. | es_ES |
dc.description.references | Li B, Lin M, Tang Y, Wang B, Wang JHC. Novel functional assessment of the differentiation of micropatterned muscle cells. J Biomech. 2008;41:3349–53. | es_ES |
dc.description.references | Blunn GW, Brown RA. Production of artificial-oriented mats and strands from plasma fibronectin: a morphological study. Biomaterials. 1993;14:743–8. | es_ES |
dc.description.references | Smith JT, Tomfohr JK, Wells MC, Beebe TP, Kepler TB, Reichert WM. Measurement of cell migration on surface-bound fibronectin gradients. Langmuir. 2004;20:8279–86. | es_ES |
dc.description.references | Smith JT, Elkin JT, Reichert WM. Directed cell migration on fibronectin gradients: effect of gradient slope. Exp Cell Res. 2006;312:2424–32. | es_ES |
dc.description.references | Rhoads DS, Guan JL. Analysis of directional cell migration on defined FN gradients: role of intracellular signaling molecules. Exp Cell Res. 2007;313:3859–67. | es_ES |
dc.description.references | Liu L, Ratner BD, Sage EH, Jiang S. Endothelial cell migration on surface-density gradients of fibronectin, VEGF, or both proteins. Langmuir. 2007;23:11168–73. | es_ES |
dc.description.references | Shi J, Wang L, Zhang F, Li H, Lei L, Liu L, Chen Y. Incorporating protein gradient into electrospun nanofibres as scaffolds for tissue engineering. ACS Appl Mater Interfaces. 2010;2:1025–30. | es_ES |
dc.description.references | Goetsch KP, Kallmeyer K, Niesler CU. Decorin modulates collagen I-stimulated, but not fibronectin-stimulated, migration of C2C12 myoblasts. Matrix Biol. 2011;30:109–17. | es_ES |
dc.description.references | Bondesen BA, Jones KA, Glasgow WC, Pavlath GK. Inhibition of myoblast migration by prostacyclin is associated with enhanced cell fusion. FASEB J. 2007;21:3338–45. | es_ES |
dc.description.references | Olguin HC, Santander C, Brandan E. Inhibition of myoblast migration via decorin expression is critical for normal skeletal muscle differentiation. Dev Biol. 2003;259:209–24. | es_ES |
dc.description.references | Konigsberg IR. Diffusion-mediated control of myoblast fusion. Dev Biol. 1971;26:133–52. | es_ES |