- -

Effect of topological cues on material-driven fibronectinfibrillogenesis and cell differentiation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of topological cues on material-driven fibronectinfibrillogenesis and cell differentiation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ballester Beltrán, José es_ES
dc.contributor.author Cantini, Marco es_ES
dc.contributor.author Lebourg, Myriam Madeleine es_ES
dc.contributor.author Rico Tortosa, Patricia María es_ES
dc.contributor.author Moratal Pérez, David es_ES
dc.contributor.author García, Andrés J. es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.date.accessioned 2014-05-15T06:28:56Z
dc.date.issued 2012-01
dc.identifier.issn 0957-4530
dc.identifier.uri http://hdl.handle.net/10251/37481
dc.description.abstract [EN] Fibronectin (FN) assembles into fibrillar networks by cells through an integrin-dependent mechanism. We have recently shown that simple FN adsorption onto poly(ethyl acrylate) surfaces (PEA), but not control polymer (poly(methyl acrylate), PMA), also triggered FN organization into a physiological fibrillar network. FN fibrils exhibited enhanced biological activities in terms of myogenic differentiation compared to individual FN molecules. In the present study, we investigate the influence of topological cues on the material-driven FN assembly and the myogenic differentiation process. Aligned and random electrospun fibers were prepared. While FN fibrils assembled on the PEA fibers as they do on the smooth surface, the characteristic distribution of globular FN molecules observed on flat PMA transformed into non-connected FN fibrils on electrospun PMA, which significantly enhanced cell differentiation. The direct relationship between the fibrillar organization of FN at the material interface and the myogenic process was further assessed by preparing FN gradients on smooth PEA and PMA films. Isolated FN molecules observed at one edge of the substrate gradually interconnected with each other, eventually forming a fully developed network of FN fibrils on PEA. In contrast, FN adopted a globular-like conformation along the entire length of the PMA surface, and the FN gradient consisted only of increased density of adsorbed FN. Correspondingly, the percentage of differentiated cells increased monotonically along the FN gradient on PEA but not on PMA. This work demonstrates an interplay between material chemistry and topology in modulating material-driven FN fibrillogenesis and cell differentiation. © 2011 Springer Science+Business Media, LLC. es_ES
dc.description.sponsorship The support of the Spanish Ministry of Science and Innovation through project MAT2009-14440-C02-01 is acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. This work was supported by funds for research in the field of Regenerative Medicine through the collaboration agreement from the Conselleria de Sanidad (Generalitat Valenciana), and the Instituto de Salud Carlos III.
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Materials Science: Materials in Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biological activities es_ES
dc.subject Cell differentiation es_ES
dc.subject Differentiated cells es_ES
dc.subject Differentiation process es_ES
dc.subject Electrospun fibers es_ES
dc.subject Electrospuns es_ES
dc.subject Fibrillar networks es_ES
dc.subject Fibrillogenesis es_ES
dc.subject Material chemistry es_ES
dc.subject Material interfaces es_ES
dc.subject Poly (ethyl acrylate) es_ES
dc.subject Poly(methyl acrylate) es_ES
dc.subject Smooth surface es_ES
dc.subject Adsorption es_ES
dc.subject Biological materials es_ES
dc.subject Electrospinning es_ES
dc.subject Molecules es_ES
dc.subject Surfaces es_ES
dc.subject Topology es_ES
dc.subject Interfaces (materials) es_ES
dc.subject Acrylic acid es_ES
dc.subject Fibronectin es_ES
dc.subject Poly(methyl methacrylate) es_ES
dc.subject Animal cell es_ES
dc.subject Conference paper es_ES
dc.subject Membrane structure es_ES
dc.subject Nonhuman es_ES
dc.subject Priority journal es_ES
dc.subject Protein assembly es_ES
dc.subject Surface property es_ES
dc.subject Animals es_ES
dc.subject Biocompatible Materials es_ES
dc.subject Cell Line es_ES
dc.subject Fibronectins es_ES
dc.subject Mice es_ES
dc.subject Microscopy, Atomic Force es_ES
dc.subject Microscopy, Electron, Scanning es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.title Effect of topological cues on material-driven fibronectinfibrillogenesis and cell differentiation es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/s10856-011-4532-z
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-01/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Ballester Beltrán, J.; Cantini, M.; Lebourg, MM.; Rico Tortosa, PM.; Moratal Pérez, D.; García, AJ.; Salmerón Sánchez, M. (2012). Effect of topological cues on material-driven fibronectinfibrillogenesis and cell differentiation. Journal of Materials Science: Materials in Medicine. 23(1):195-204. https://doi.org/10.1007/s10856-011-4532-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 24th Annual European Conference on Biomaterials of the European-Society-for-Biomaterials (ESB)
dc.relation.conferencedate September 04-08, 2011
dc.relation.conferenceplace Dublín, Ireland
dc.relation.publisherversion http://dx.doi.org/10.1007/s10856-011-4532-z es_ES
dc.description.upvformatpinicio 195 es_ES
dc.description.upvformatpfin 204 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 209137
dc.identifier.pmid 22201030
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Singh P, Carraher C, Schwarzbauer JE. Assembly of fibronectin extracellular matrix. Ann Rev Cell Dev Biol. 2010;26:397–419. es_ES
dc.description.references Hynes RO. Fibronectins springer series in molecular biology. New York: Springer; 1990. es_ES
dc.description.references Mao Y, Schwarzbauer JE. FN fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 2005;24:389–99. es_ES
dc.description.references Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane extracellular matrix–cytoskeleton crosstalk. Natl Rev Mol Cell Biol. 2001;2:793–805. es_ES
dc.description.references Sakai K, Fujii T, Hayashi T. Cell-free formation of disulfide-bonded multimer from isolated plasma fibronectin in the presence of a low concentration of SH reagent under a physiological condition. J Biochem. 1994;115:415–21. es_ES
dc.description.references Vartio T. Disulfide-bonded polymerization of plasma fibronectin in the presence of metal ions. J Biol Chem. 1986;261:9433–7. es_ES
dc.description.references Mosher DF, Johnson RB. In vitro formation of disulfide-bonded fibronectin multimers. J Biol Chem. 1983;258:6595–601. es_ES
dc.description.references Vuento M, Vartio T, Saraste M, von Bonsdorff CH, Vaheri A. Spontaneous and polyamine-induced formation of filamentous polymers from soluble fibronectin. Eur J Biochem. 1980;105:33–42. es_ES
dc.description.references Richter H, Wendt C, Hörmann H. Aggregation and fibril formation of plasma fibronectin by heparin. Biol Chem Hoppe-Seyler. 1985;366:509–14. es_ES
dc.description.references Morla A, Zhang Z, Ruoslahti E. Superfibronectin is a functionally distinct form of fibronectin. Nature. 1994;367:193–6. es_ES
dc.description.references Baneyx G, Vogel V. Self-assembly of fibronectin into fibrillar networks underneath dipalmitoylphosphatidylcholine monolayers: role of lipid matrix and tensile forces. Proc Natl Acad Sci USA. 1999;96:12518–23. es_ES
dc.description.references Ulmer J, Geiger B, Spatz JP. Force-induced fibronectin fibrillogenesis in vitro. Soft Matter. 2008;4:1998–2007. es_ES
dc.description.references Brown RA, Blunn GW, Ejim OS. Preparation of orientated fibrous mats from fibronectin: composition and stability. Biomaterials. 1994;15:457–64. es_ES
dc.description.references Little WC, Smith ML, Ebneter U, Vogel V. Assay to mechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage. Matrix Biol. 2008;27:451–61. es_ES
dc.description.references Klotzsch E, Smith ML, Kubow KE, Muntwyler S, Little WC, Beyeler F, Gourdon D, Nelson BJ, Vogel V. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc Natl Acad Sci USA. 2009;106:18267–72. es_ES
dc.description.references Rico P, Rodríguez Hernández JC, Moratal D, Altankov G, Monleón Pradas M, Salmerón-Sánchez M. Substrate-induced assembly of fibronectin into networks: influence of surface chemistry and effect on osteoblast adhesion. Tissue Eng Part A. 2009;15:3271–81. es_ES
dc.description.references Gugutkov D, González-García C, Rodríguez Hernández JC, Altankov G, Salmerón-Sánchez M. Biological activity of the substrate-induced FN network: insight into the third dimension through electrospun fibers. Langmuir. 2009;25:10893–900. es_ES
dc.description.references Salmerón-Sánchez M, Rico P, Moratal D, Lee T, Schwarzbauer J, García AJ. Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials. 2011;32:2099–115. es_ES
dc.description.references Sabourin LA, Rudnicki MA. The molecular regulation of myogenesis. Clin Genet. 2000;57:16–25. es_ES
dc.description.references Agarwal S, Wendorff J, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49:5603–21. es_ES
dc.description.references Sill TJS, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006. es_ES
dc.description.references Huber A, Pickett A, Shakesheff KM. Reconstruction of spatially orientated myotubes in vitro using electrospun, parallel microfibre arrays. Eur Cells Mater. 2007;14:56–63. es_ES
dc.description.references Jun I, Jeong S, Shin H. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers. Biomaterials. 2009;30:2038–47. es_ES
dc.description.references Clark P, Dunn GA, Knibbs A, Peckham M. Alignment of myoblasts on ultrafine gratings inhibits fusion in vitro. Int J Biochem Cell Biol. 2002;34:816–25. es_ES
dc.description.references Lam MT, Sim S, Zhu X, Takayama S. The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes. Biomaterials. 2007;27:4340–7. es_ES
dc.description.references Altomare L, Gadegaard N, Visai L, Tanzi MC, Farè S. Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development. Acta Biomater. 2010;6:1948–57. es_ES
dc.description.references Altomare L, Riehle M, Gadegaard N, Tanzi MC, Farè S. Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation. Int J Artif Organs. 2010;33:535–43. es_ES
dc.description.references Neumann T, Hauschka SD, Sanders JE. Tissue engineering of skeletal muscle using polymer fiber arrays. Tissue Eng. 2003;9:995–1003. es_ES
dc.description.references Tse JR, Engler A. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One. 2011;6:e15978. es_ES
dc.description.references Gómez-Tejedor JA, Van Overberghe N, Rico P, Gómez Ribelles JL. Assessment of the parameters influencing the fiber characteristics of electrospun poly(ethyl methacrylate) membranes. Eur Polym J. 2011;47:119–29. es_ES
dc.description.references O’Connell B. Oval Profile Plot. Research Services Branch, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke. Available from: http://rsbweb.nih.gov/ij/plugins/oval-profile.html . Accessed 30 November 2011. es_ES
dc.description.references Gugutkov D, Altankov G, Rodríguez Hernández JC, Monleón Pradas M, Salmerón Sánchez M. Fibronectin activity on substrates with controlled–OH density. J Biomed Mater Res. 2010;A92:322–31. es_ES
dc.description.references Schwarzbauer JE. Identification of FN sequences required for assembly of a fibrillar matrix. J Cell Biol. 1991;113:1463–73. es_ES
dc.description.references Mukhatyar VJ, Salmerón-Sánchez M, Rudra S, Mukhopadaya S, Barker TH, García AJ, Bellamkonda RV. Role of fibronectin in topographical guidance of neurite extension on electrospun fibers. Biomaterials. 2011;32:3958–68. es_ES
dc.description.references Wakelam MJ. The fusion of myoblasts. Biochem J. 1985;228:1–12. es_ES
dc.description.references Quach NL, Rando TA. Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Dev Biol. 2006;293:38–52. es_ES
dc.description.references Charest JL, García AJ, King WP. Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries. Biomaterials. 2007;28:2202–10. es_ES
dc.description.references Berendse M, Grounds MD, Lloyd CM. Myoblast structure affects subsequent skeletal myotube morphology and sarcomere assembly. Exp Cell Res. 2003;291:435–50. es_ES
dc.description.references Li B, Lin M, Tang Y, Wang B, Wang JHC. Novel functional assessment of the differentiation of micropatterned muscle cells. J Biomech. 2008;41:3349–53. es_ES
dc.description.references Blunn GW, Brown RA. Production of artificial-oriented mats and strands from plasma fibronectin: a morphological study. Biomaterials. 1993;14:743–8. es_ES
dc.description.references Smith JT, Tomfohr JK, Wells MC, Beebe TP, Kepler TB, Reichert WM. Measurement of cell migration on surface-bound fibronectin gradients. Langmuir. 2004;20:8279–86. es_ES
dc.description.references Smith JT, Elkin JT, Reichert WM. Directed cell migration on fibronectin gradients: effect of gradient slope. Exp Cell Res. 2006;312:2424–32. es_ES
dc.description.references Rhoads DS, Guan JL. Analysis of directional cell migration on defined FN gradients: role of intracellular signaling molecules. Exp Cell Res. 2007;313:3859–67. es_ES
dc.description.references Liu L, Ratner BD, Sage EH, Jiang S. Endothelial cell migration on surface-density gradients of fibronectin, VEGF, or both proteins. Langmuir. 2007;23:11168–73. es_ES
dc.description.references Shi J, Wang L, Zhang F, Li H, Lei L, Liu L, Chen Y. Incorporating protein gradient into electrospun nanofibres as scaffolds for tissue engineering. ACS Appl Mater Interfaces. 2010;2:1025–30. es_ES
dc.description.references Goetsch KP, Kallmeyer K, Niesler CU. Decorin modulates collagen I-stimulated, but not fibronectin-stimulated, migration of C2C12 myoblasts. Matrix Biol. 2011;30:109–17. es_ES
dc.description.references Bondesen BA, Jones KA, Glasgow WC, Pavlath GK. Inhibition of myoblast migration by prostacyclin is associated with enhanced cell fusion. FASEB J. 2007;21:3338–45. es_ES
dc.description.references Olguin HC, Santander C, Brandan E. Inhibition of myoblast migration via decorin expression is critical for normal skeletal muscle differentiation. Dev Biol. 2003;259:209–24. es_ES
dc.description.references Konigsberg IR. Diffusion-mediated control of myoblast fusion. Dev Biol. 1971;26:133–52. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem