- -

Improvements on automatic speech segmentation at the phonetic level

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Improvements on automatic speech segmentation at the phonetic level

Show full item record

Gómez Adrian, JA.; Calvo Lance, M. (2011). Improvements on automatic speech segmentation at the phonetic level. En Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Springer Verlag (Germany). 7042:557-564. doi:10.1007/978-3-642-25085-9_66

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37516

Files in this item

Item Metadata

Title: Improvements on automatic speech segmentation at the phonetic level
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
In this paper, we present some recent improvements in our automatic speech segmentation system, which only needs the speech signal and the phonetic sequence of each sentence of a corpus to be trained. It estimates a GMM ...[+]
Subjects: Automatic speech segmentation , Phoneme boundaries detection , Phoneme alignment , Conditional probabilities , Initial values , Iterative process , Phonetic level , Probability densities , Speech signals , Computer vision , Estimation , Image segmentation , Probability distributions
Copyrigths: Reserva de todos los derechos
ISBN: 978-3-642-25084-2
Source:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. (issn: 0302-9743 )
DOI: 10.1007/978-3-642-25085-9_66
Publisher:
Springer Verlag (Germany)
Publisher version: http://link.springer.com/chapter/10.1007/978-3-642-25085-9_66
Conference name: 16th Iberoamerican Congress, CIARP 2011
Conference place: Pucón, Chile
Conference date: November 15-18, 2011
Series: Lecture Notes in Computer Science;7042
Type: Capítulo de libro

This item appears in the following Collection(s)

Show full item record