Mostrar el registro sencillo del ítem
dc.contributor.author | Gómez Adrian, Jon Ander | es_ES |
dc.contributor.author | Calvo Lance, Marcos | es_ES |
dc.date.accessioned | 2014-05-16T09:15:15Z | |
dc.date.issued | 2011 | |
dc.identifier.isbn | 978-3-642-25084-2 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/10251/37516 | |
dc.description.abstract | In this paper, we present some recent improvements in our automatic speech segmentation system, which only needs the speech signal and the phonetic sequence of each sentence of a corpus to be trained. It estimates a GMM by using all the sentences of the training subcorpus, where each Gaussian distribution represents an acoustic class, which probability densities are combined with a set of conditional probabilities in order to estimate the probability densities of the states of each phonetic unit. The initial values of the conditional probabilities are obtained by using a segmentation of each sentence assigning the same number of frames to each phonetic unit. A DTW algorithm fixes the phonetic boundaries using the known phonetic sequence. This DTW is a step inside an iterative process which aims to segment the corpus and re-estimate the conditional probabilities. The results presented here demonstrate that the system has a good capacity to learn how to identify the phonetic boundaries. © 2011 Springer-Verlag. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish MICINN under contract TIN2008-06856-C05-02 | |
dc.format.extent | 8 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications | es_ES |
dc.relation.ispartofseries | Lecture Notes in Computer Science;7042 | |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Automatic speech segmentation | es_ES |
dc.subject | Phoneme boundaries detection | es_ES |
dc.subject | Phoneme alignment | es_ES |
dc.subject | Conditional probabilities | es_ES |
dc.subject | Initial values | es_ES |
dc.subject | Iterative process | es_ES |
dc.subject | Phonetic level | es_ES |
dc.subject | Probability densities | es_ES |
dc.subject | Speech signals | es_ES |
dc.subject | Computer vision | es_ES |
dc.subject | Estimation | es_ES |
dc.subject | Image segmentation | es_ES |
dc.subject | Probability distributions | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Improvements on automatic speech segmentation at the phonetic level | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1007/978-3-642-25085-9_66 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2008-06856-C05-02/ES/SISTEMAS BASADOS EN LA INTERACCION ORAL DINAMICAMENTE MEJORABLES Y ADAPTABLES A NUEVOS CONTEXTOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Gómez Adrian, JA.; Calvo Lance, M. (2011). Improvements on automatic speech segmentation at the phonetic level. En Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Springer Verlag (Germany). 7042:557-564. https://doi.org/10.1007/978-3-642-25085-9_66 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 16th Iberoamerican Congress, CIARP 2011 | es_ES |
dc.relation.conferencedate | November 15-18, 2011 | es_ES |
dc.relation.conferenceplace | Pucón, Chile | es_ES |
dc.relation.publisherversion | http://link.springer.com/chapter/10.1007/978-3-642-25085-9_66 | es_ES |
dc.description.upvformatpinicio | 557 | es_ES |
dc.description.upvformatpfin | 564 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7042 | es_ES |
dc.relation.senia | 211330 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.description.references | Toledano, D.T., Hernández Gómez, L., Villarrubia Grande, L.: Automatic Phonetic Segmentation. IEEE Transactions on Speech and Audio Processing 11(6), 617–625 (2003) | es_ES |
dc.description.references | Kipp, A., Wesenick, M.B., Schiel, F.: Pronunciation modelling applied to automatic segmentation of spontaneous speech. In: Proceedings of Eurospeech, Rhodes, Greece, pp. 2013–2026 (1997) | es_ES |
dc.description.references | Sethy, A., Narayanan, S.: Refined Speech Segmentation for Concatenative Speech Synthesis. In: Proceedings of ICSLP, Denver, Colorado, USA, pp. 149–152 (2002) | es_ES |
dc.description.references | Jarify, S., Pastor, D., Rosec, O.: Cooperation between global and local methods for the automatic segmentation of speech synthesis corpora. In: Proceedings of Interspeech, Pittsburgh, Pennsylvania, USA, pp. 1666–1669 (2006) | es_ES |
dc.description.references | Romsdorfer, H., Pfister, B.: Phonetic Labeling and Segmentation of Mixed-Lingual Prosody Databases. In: Proceedings of Interspeech, Lisbon, Portual, pp. 3281–3284 (2005) | es_ES |
dc.description.references | Paulo, S., Oliveira, L.C.: DTW-based Phonetic Alignment Using Multiple Acoustic Features. In: Proceedings of Eurospeech, Geneva, Switzerland, pp. 309–312 (2003) | es_ES |
dc.description.references | Park, S.S., Shin, J.W., Kim, N.S.: Automatic Speech Segmentation with Multiple Statistical Models. In: Proceedings of Interspeech, Pittsburgh, Pennsylvania, USA, pp. 2066–2069 (2006) | es_ES |
dc.description.references | Mporas, I., Ganchev, T., Fakotakis, N.: Speech segmentation using regression fusion of boundary predictions. Computer Speech and Language 24, 273–288 (2010) | es_ES |
dc.description.references | Povey, D., Woodland, P.C.: Minimum Phone Error and I-smoothing for improved discriminative training. In: Proceedings of ICASSP, Orlando, Florida, USA, pp. 105–108 (2002) | es_ES |
dc.description.references | Kuo, J.W., Wang, H.M.: Minimum Boundary Error Training for Automatic Phonetic Segmentation. In: Proceedings of Interspeech, Pittsburgh, Pennsylvania, USA, pp. 1217–1220 (2006) | es_ES |
dc.description.references | Huggins-Daines, D., Rudnicky, A.I.: A Constrained Baum-Welch Algorithm for Improved Phoneme Segmentation and Efficient Training. In: Proceedings of Interspeech, Pittsburgh, Pennsylvania, USA, pp. 1205–1208 (2006) | es_ES |
dc.description.references | Ogbureke, K.U., Carson-Berndsen, J.: Improving initial boundary estimation for HMM-based automatic phonetic segmentation. In: Proceedings of Interspeech, Brighton, UK, pp. 884–887 (2009) | es_ES |
dc.description.references | Gómez, J.A., Castro, M.J.: Automatic Segmentation of Speech at the Phonetic Level. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 672–680. Springer, Heidelberg (2002) | es_ES |
dc.description.references | Gómez, J.A., Sanchis, E., Castro-Bleda, M.J.: Automatic Speech Segmentation Based on Acoustical Clustering. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 540–548. Springer, Heidelberg (2010) | es_ES |
dc.description.references | Moreno, A., Poch, D., Bonafonte, A., Lleida, E., Llisterri, J., Mariño, J.B., Nadeu, C.: Albayzin Speech Database: Design of the Phonetic Corpus. In: Proceedings of Eurospeech, Berlin, Germany, vol. 1, pp. 653–656 (September 1993) | es_ES |
dc.description.references | TIMIT Acoustic-Phonetic Continuous Speech Corpus, National Institute of Standards and Technology Speech Disc 1-1.1, NTIS Order No. PB91-5050651996 (October 1990) | es_ES |