- -

Water-stabilized three-and four-atom palladium clusters as highly active catalytic species in ligand-free C-C cross coupling reactions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Water-stabilized three-and four-atom palladium clusters as highly active catalytic species in ligand-free C-C cross coupling reactions

Show full item record

Leyva Perez, A.; Oliver Meseguer, J.; Rubio Marqués, P.; Corma Canós, A. (2013). Water-stabilized three-and four-atom palladium clusters as highly active catalytic species in ligand-free C-C cross coupling reactions. Angewandte Chemie International Edition. 125(44):11768-11773. doi:10.1002/anie.201303188

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37686

Files in this item

Item Metadata

Title: Water-stabilized three-and four-atom palladium clusters as highly active catalytic species in ligand-free C-C cross coupling reactions
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
Auf kleinstem Nenner: Palladiumcluster mit drei oder vier Atomen erwiesen sich als katalytisch aktive Spezies in ligandenfreien palladiumkatalysierten C-C-Kupplungen (siehe Bild). Die Cluster konnten in Wasser stabilisiert ...[+]
Subjects: Cluster , Homogene Katalyse , Kreuzkupplungen , Ligandenfreie Bedingungen , Palladium
Copyrigths: Cerrado
Source:
Angewandte Chemie International Edition. (issn: 1433-7851 )
DOI: 10.1002/anie.201303188
Publisher:
Wiley-VCH Verlag
Publisher version: http://onlinelibrary.wiley.com/doi/10.1002/ange.201303188/abstract
Thanks:
Financial support by Consolider-Ingenio 2010 (proyecto MULTICAT) and the "Severo Ochoa" program is acknowledged. A. L.-P. and J.O.-M. thank the ITQ for a contract. P. R.-M. thanks the MEC for an FPU contract. The MALDI-TOF ...[+]
Type: Artículo

References

Wu, X.-F., Anbarasan, P., Neumann, H., & Beller, M. (2010). Vom Edelmetall zum Nobelpreis: Palladiumkatalysierte Kupplungen als Schlüsselmethode in der organischen Synthese. Angewandte Chemie, 122(48), 9231-9234. doi:10.1002/ange.201006374

Wu, X.-F., Anbarasan, P., Neumann, H., & Beller, M. (2010). From Noble Metal to Nobel Prize: Palladium-Catalyzed Coupling Reactions as Key Methods in Organic Synthesis. Angewandte Chemie International Edition, 49(48), 9047-9050. doi:10.1002/anie.201006374

Phan, N. T. S., Van Der Sluys, M., & Jones, C. W. (2006). On the Nature of the Active Species in Palladium Catalyzed Mizoroki–Heck and Suzuki–Miyaura Couplings – Homogeneous or Heterogeneous Catalysis, A Critical Review. Advanced Synthesis & Catalysis, 348(6), 609-679. doi:10.1002/adsc.200505473 [+]
Wu, X.-F., Anbarasan, P., Neumann, H., & Beller, M. (2010). Vom Edelmetall zum Nobelpreis: Palladiumkatalysierte Kupplungen als Schlüsselmethode in der organischen Synthese. Angewandte Chemie, 122(48), 9231-9234. doi:10.1002/ange.201006374

Wu, X.-F., Anbarasan, P., Neumann, H., & Beller, M. (2010). From Noble Metal to Nobel Prize: Palladium-Catalyzed Coupling Reactions as Key Methods in Organic Synthesis. Angewandte Chemie International Edition, 49(48), 9047-9050. doi:10.1002/anie.201006374

Phan, N. T. S., Van Der Sluys, M., & Jones, C. W. (2006). On the Nature of the Active Species in Palladium Catalyzed Mizoroki–Heck and Suzuki–Miyaura Couplings – Homogeneous or Heterogeneous Catalysis, A Critical Review. Advanced Synthesis & Catalysis, 348(6), 609-679. doi:10.1002/adsc.200505473

Littke, A. F., & Fu, G. C. (2002). Palladiumkatalysierte Kupplungen von Arylchloriden. Angewandte Chemie, 114(22), 4350-4386. doi:10.1002/1521-3757(20021115)114:22<4350::aid-ange4350>3.0.co;2-0

Littke, A. F., & Fu, G. C. (2002). Palladium-Catalyzed Coupling Reactions of Aryl Chlorides. Angewandte Chemie International Edition, 41(22), 4176-4211. doi:10.1002/1521-3773(20021115)41:22<4176::aid-anie4176>3.0.co;2-u

Reetz, M. T., & de Vries, J. G. (2004). Ligand-free Heck reactions using low Pd-loading. Chemical Communications, (14), 1559. doi:10.1039/b406719n

De Vries, A. H. M., Mulders, J. M. C. A., Mommers, J. H. M., Henderickx, H. J. W., & de Vries, J. G. (2003). Homeopathic Ligand-Free Palladium as a Catalyst in the Heck Reaction. A Comparison with a Palladacycle. Organic Letters, 5(18), 3285-3288. doi:10.1021/ol035184b

Alonso, D. A., & Nájera, C. (2010). Oxime-derived palladacycles as source of palladium nanoparticles. Chemical Society Reviews, 39(8), 2891. doi:10.1039/b821314n

Marion, N., & Nolan, S. P. (2008). Well-Defined N-Heterocyclic Carbenes−Palladium(II) Precatalysts for Cross-Coupling Reactions. Accounts of Chemical Research, 41(11), 1440-1449. doi:10.1021/ar800020y

Martin, R., & Buchwald, S. L. (2008). Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Accounts of Chemical Research, 41(11), 1461-1473. doi:10.1021/ar800036s

Surry, D. S., & Buchwald, S. L. (2008). Biarylphosphanliganden in der palladiumkatalysierten Aminierung. Angewandte Chemie, 120(34), 6438-6461. doi:10.1002/ange.200800497

Surry, D. S., & Buchwald, S. L. (2008). Biaryl Phosphane Ligands in Palladium-Catalyzed Amination. Angewandte Chemie International Edition, 47(34), 6338-6361. doi:10.1002/anie.200800497

Torborg, C., & Beller, M. (2009). Recent Applications of Palladium-Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Advanced Synthesis & Catalysis, 351(18), 3027-3043. doi:10.1002/adsc.200900587

Beletskaya, I. P., & Cheprakov, A. V. (2000). The Heck Reaction as a Sharpening Stone of Palladium Catalysis. Chemical Reviews, 100(8), 3009-3066. doi:10.1021/cr9903048

Israeli 1999

Bedford, R. B. (2003). Palladacyclic catalysts in C–C and C–heteroatom bond-forming reactions. Chem. Commun., (15), 1787-1796. doi:10.1039/b211298c

Dupont, J., Consorti, C. S., & Spencer, J. (2005). The Potential of Palladacycles:  More Than Just Precatalysts. Chemical Reviews, 105(6), 2527-2572. doi:10.1021/cr030681r

Astruc, D. (2010). Palladium catalysis using dendrimers: molecular catalysts versus nanoparticles. Tetrahedron: Asymmetry, 21(9-10), 1041-1054. doi:10.1016/j.tetasy.2010.04.062

Okamoto, K., Akiyama, R., Yoshida, H., Yoshida, T., & Kobayashi, S. (2005). Formation of Nanoarchitectures Including Subnanometer Palladium Clusters and Their Use as Highly Active Catalysts. Journal of the American Chemical Society, 127(7), 2125-2135. doi:10.1021/ja047095f

Mehnert, C. P., Weaver, D. W., & Ying, J. Y. (1998). Heterogeneous Heck Catalysis with Palladium-Grafted Molecular Sieves. Journal of the American Chemical Society, 120(47), 12289-12296. doi:10.1021/ja971637u

Choudary, B. M., Madhi, S., Chowdari, N. S., Kantam, M. L., & Sreedhar, B. (2002). Layered Double Hydroxide Supported Nanopalladium Catalyst for Heck-, Suzuki-, Sonogashira-, and Stille-Type Coupling Reactions of Chloroarenes. Journal of the American Chemical Society, 124(47), 14127-14136. doi:10.1021/ja026975w

Weck, M., & Jones, C. W. (2007). Mizoroki−Heck Coupling Using Immobilized Molecular Precatalysts:  Leaching Active Species from Pd Pincers, Entrapped Pd Salts, and Pd NHC Complexes. Inorganic Chemistry, 46(6), 1865-1875. doi:10.1021/ic061898h

Reetz, M. T., & Westermann, E. (2000). Phosphanfreie Palladium-katalysierte Kupplungen: die entscheidende Rolle von Pd-Nanoteilchen. Angewandte Chemie, 112(1), 170-173. doi:10.1002/(sici)1521-3757(20000103)112:1<170::aid-ange170>3.0.co;2-a

Reetz, M. T., & Westermann, E. (2000). Phosphane-Free Palladium-Catalyzed Coupling Reactions: The Decisive Role of Pd Nanoparticles. Angewandte Chemie International Edition, 39(1), 165-168. doi:10.1002/(sici)1521-3773(20000103)39:1<165::aid-anie165>3.0.co;2-b

Amatore, C., & Jutand, A. (2000). Anionic Pd(0) and Pd(II) Intermediates in Palladium-Catalyzed Heck and Cross-Coupling Reactions. Accounts of Chemical Research, 33(5), 314-321. doi:10.1021/ar980063a

De Vries, J. G. (2006). A unifying mechanism for all high-temperature Heck reactions. The role of palladium colloids and anionic species. Dalton Trans., (3), 421-429. doi:10.1039/b506276b

Gaikwad, A. V., & Rothenberg, G. (2006). In-situ UV-visible study of Pd nanocluster formation in solution. Physical Chemistry Chemical Physics, 8(31), 3669. doi:10.1039/b604665g

Thathagar, M. B., ten Elshof, J. E., & Rothenberg, G. (2006). Pd Nanoclusters in CC Coupling Reactions: Proof of Leaching. Angewandte Chemie, 118(18), 2952-2956. doi:10.1002/ange.200504321

Thathagar, M. B., ten Elshof, J. E., & Rothenberg, G. (2006). Pd Nanoclusters in CC Coupling Reactions: Proof of Leaching. Angewandte Chemie International Edition, 45(18), 2886-2890. doi:10.1002/anie.200504321

Gaikwad, A. V., Holuigue, A., Thathagar, M. B., ten Elshof, J. E., & Rothenberg, G. (2007). Ion- and Atom-Leaching Mechanisms from Palladium Nanoparticles in Cross-Coupling Reactions. Chemistry - A European Journal, 13(24), 6908-6913. doi:10.1002/chem.200700105

Diallo, A. K., Ornelas, C., Salmon, L., Ruiz Aranzaes, J., & Astruc, D. (2007). «Homeopathic» Catalytic Activity and Atom-Leaching Mechanism in Miyaura–Suzuki Reactions under Ambient Conditions with Precise Dendrimer-Stabilized Pd Nanoparticles. Angewandte Chemie, 119(45), 8798-8802. doi:10.1002/ange.200703067

Diallo, A. K., Ornelas, C., Salmon, L., Ruiz Aranzaes, J., & Astruc, D. (2007). «Homeopathic» Catalytic Activity and Atom-Leaching Mechanism in Miyaura-Suzuki Reactions under Ambient Conditions with Precise Dendrimer-Stabilized Pd Nanoparticles. Angewandte Chemie International Edition, 46(45), 8644-8648. doi:10.1002/anie.200703067

Köhler, K., Kleist, W., & Pröckl, S. S. (2007). Genesis of Coordinatively Unsaturated Palladium Complexes Dissolved from Solid Precursors during Heck Coupling Reactions and Their Role as Catalytically Active Species. Inorganic Chemistry, 46(6), 1876-1883. doi:10.1021/ic061907m

Ananikov, V. P., & Beletskaya, I. P. (2012). Toward the Ideal Catalyst: From Atomic Centers to a «Cocktail» of Catalysts. Organometallics, 31(5), 1595-1604. doi:10.1021/om201120n

Schmidt, A. F., & Smirnov, V. V. (2005). Concept of ?magic? number clusters as a new approach to the interpretation of unusual kinetics of the Heck reaction with aryl bromides. Topics in Catalysis, 32(1-2), 71-75. doi:10.1007/s11244-005-9261-4

BRANDSMA, L., & VERKRUIJSSE, H. D. (1978). An Improved Synthesis of Cyclooctyne. Synthesis, 1978(04), 290-290. doi:10.1055/s-1978-24725

Botella, L., & Nájera, C. (2002). A Convenient Oxime-Carbapalladacycle-Catalyzed Suzuki Cross-Coupling of Aryl Chlorides in Water. Angewandte Chemie, 114(1), 187-189. doi:10.1002/1521-3757(20020104)114:1<187::aid-ange187>3.0.co;2-a

Botella, L., & Nájera, C. (2002). A Convenient Oxime-Carbapalladacycle-Catalyzed Suzuki Cross-Coupling of Aryl Chlorides in Water. Angewandte Chemie International Edition, 41(1), 179-181. doi:10.1002/1521-3773(20020104)41:1<179::aid-anie179>3.0.co;2-o

Alonso, D. A., Nájera, C., & Pacheco, M. C. (2002). Oxime-Derived Palladium Complexes as Very Efficient Catalysts for the Heck–Mizoroki Reaction. Advanced Synthesis & Catalyis, 344(2), 172. doi:10.1002/1615-4169(200202)344:2<172::aid-adsc172>3.0.co;2-9

Alonso, D. A., Nájera, C., & Pacheco, M. C. (2002). Highly Active Oxime-Derived Palladacycle Complexes for Suzuki−Miyaura and Ullmann-Type Coupling Reactions. The Journal of Organic Chemistry, 67(16), 5588-5594. doi:10.1021/jo025619t

Walker, S. D., Barder, T. E., Martinelli, J. R., & Buchwald, S. L. (2004). A Rationally Designed Universal Catalyst for Suzuki–Miyaura Coupling Processes. Angewandte Chemie, 116(14), 1907-1912. doi:10.1002/ange.200353615

Walker, S. D., Barder, T. E., Martinelli, J. R., & Buchwald, S. L. (2004). A Rationally Designed Universal Catalyst for Suzuki–Miyaura Coupling Processes. Angewandte Chemie International Edition, 43(14), 1871-1876. doi:10.1002/anie.200353615

Barder, T. E., Walker, S. D., Martinelli, J. R., & Buchwald, S. L. (2005). Catalysts for Suzuki−Miyaura Coupling Processes:  Scope and Studies of the Effect of Ligand Structure. Journal of the American Chemical Society, 127(13), 4685-4696. doi:10.1021/ja042491j

Man, R. W. Y., Brown, A. R. C., & Wolf, M. O. (2012). Mechanism of Formation of Palladium Nanoparticles: Lewis Base Assisted, Low-Temperature Preparation of Monodisperse Nanoparticles. Angewandte Chemie, 124(45), 11512-11515. doi:10.1002/ange.201205057

Man, R. W. Y., Brown, A. R. C., & Wolf, M. O. (2012). Mechanism of Formation of Palladium Nanoparticles: Lewis Base Assisted, Low-Temperature Preparation of Monodisperse Nanoparticles. Angewandte Chemie International Edition, 51(45), 11350-11353. doi:10.1002/anie.201205057

Zheng, J., Zhang, C., & Dickson, R. M. (2004). Highly Fluorescent, Water-Soluble, Size-Tunable Gold Quantum Dots. Physical Review Letters, 93(7). doi:10.1103/physrevlett.93.077402

Hyotanishi, M., Isomura, Y., Yamamoto, H., Kawasaki, H., & Obora, Y. (2011). Surfactant-free synthesis of palladium nanoclusters for their use in catalytic cross-coupling reactions. Chemical Communications, 47(20), 5750. doi:10.1039/c1cc11487e

Rosner, T., Le Bars, J., Pfaltz, A., & Blackmond, D. G. (2001). Kinetic Studies of Heck Coupling Reactions Using Palladacycle Catalysts: Experimental and Kinetic Modeling of the Role of Dimer Species. Journal of the American Chemical Society, 123(9), 1848-1855. doi:10.1021/ja003191e

Cotugno, P., Monopoli, A., Ciminale, F., Cioffi, N., & Nacci, A. (2012). Pd nanoparticle catalysed one-pot sequential Heck and Suzuki couplings of bromo-chloroarenes in ionic liquids and water. Org. Biomol. Chem., 10(4), 808-813. doi:10.1039/c1ob06385e

Zhao, F., Shirai, M., & Arai, M. (2000). Palladium-catalyzed homogeneous and heterogeneous Heck reactions in NMP and water-mixed solvents using organic, inorganic and mixed bases. Journal of Molecular Catalysis A: Chemical, 154(1-2), 39-44. doi:10.1016/s1381-1169(99)00369-6

Sud, A., Deshpande, R. M., & Chaudhari, R. V. (2007). Rate enhancement in palladium catalyzed Heck reactions by Lewis acid promoters. Catalysis Communications, 8(2), 183-186. doi:10.1016/j.catcom.2006.05.043

Hierso, J.-C., Fihri, A., Amardeil, R., Meunier, P., Doucet, H., Santelli, M., & Ivanov, V. V. (2004). Catalytic Efficiency of a New Tridentate Ferrocenyl Phosphine Auxiliary:  Sonogashira Cross-Coupling Reactions of Alkynes with Aryl Bromides and Chlorides at Low Catalyst Loadings of 10-1to 10-4Mol %. Organic Letters, 6(20), 3473-3476. doi:10.1021/ol048870z

Köllhofer, A., & Plenio, H. (2005). A Convenient High Activity Catalyst for the Sonogashira Coupling of Aryl Bromides. Advanced Synthesis & Catalysis, 347(9), 1295-1300. doi:10.1002/adsc.200505095

Borja, G., Monge-Marcet, A., Pleixats, R., Parella, T., Cattoën, X., & Wong Chi Man, M. (2012). Recyclable Hybrid Silica-Based Catalysts Derived from Pd-NHC Complexes for Suzuki, Heck and Sonogashira Reactions. European Journal of Organic Chemistry, 2012(19), 3625-3635. doi:10.1002/ejoc.201200205

Albisson, D. A., Bedford, R. B., Noelle Scully, P., & Lawrence, S. E. (1998). Orthopalladated triaryl phosphite complexes as highly active catalysts in biaryl coupling reactions. Chemical Communications, (19), 2095-2096. doi:10.1039/a806041j

Arvela, R. K., Leadbeater, N. E., Sangi, M. S., Williams, V. A., Granados, P., & Singer, R. D. (2005). A Reassessment of the Transition-Metal Free Suzuki-Type Coupling Methodology. The Journal of Organic Chemistry, 70(1), 161-168. doi:10.1021/jo048531j

Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813

Hashmi, A. S. K. (2012). Sub-Nanosized Gold Catalysts. Science, 338(6113), 1434-1434. doi:10.1126/science.1231901

Le Bars, J., Specht, U., Bradley, J. S., & Blackmond, D. G. (1999). A Catalytic Probe of the Surface of Colloidal Palladium Particles Using Heck Coupling Reactions. Langmuir, 15(22), 7621-7625. doi:10.1021/la990144v

Ellis, P. J., Fairlamb, I. J. S., Hackett, S. F. J., Wilson, K., & Lee, A. F. (2010). Evidence for the Surface-Catalyzed Suzuki-Miyaura Reaction over Palladium Nanoparticles: An Operando XAS Study. Angewandte Chemie, 122(10), 1864-1868. doi:10.1002/ange.200906675

Ellis, P. J., Fairlamb, I. J. S., Hackett, S. F. J., Wilson, K., & Lee, A. F. (2010). Evidence for the Surface-Catalyzed Suzuki-Miyaura Reaction over Palladium Nanoparticles: An Operando XAS Study. Angewandte Chemie International Edition, 49(10), 1820-1824. doi:10.1002/anie.200906675

[-]

This item appears in the following Collection(s)

Show full item record