- -

Stiffness variation of porous titanium developed using space holder method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stiffness variation of porous titanium developed using space holder method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Reig Cerdá, Lucía es_ES
dc.contributor.author Amigó Borrás, Vicente es_ES
dc.contributor.author Busquets Mataix, David Jerónimo es_ES
dc.contributor.author Calero, José Antonio es_ES
dc.date.accessioned 2014-06-03T09:35:19Z
dc.date.issued 2011-07
dc.identifier.issn 0032-5899
dc.identifier.uri http://hdl.handle.net/10251/37892
dc.description.abstract The excellent properties of Ti have resulted in its generalised use for bone implants. However, Ti is very stiff in comparison with human cortical bone, and this creates problems of bone weakening and loosening of the implant. This article discusses the mechanical properties (flexural and compressive strength, and stiffness) of porous Ti-6Al-4V specimens developed using the space holder method. These properties are examined relative to the production process parameters: compacting pressure and sintering time, as well as temperature, and the addition of spacer and its particle size. It is seen that when spacer is added, compressive strength decreases with the application of compacting pressure and that these are the most influential parameters. The developed pieces show a closed and unconnected porosity. Small additions of spacer (25 vol.-%) reduce stiffness to around half of that shown by the solid material, and the resulting pieces are strong enough to be used as bone substitute. © 2011 Institute of Materials, Minerals and Mining. es_ES
dc.description.sponsorship The authors wish to thank the Spanish Ministry of Science and Innovation for the support received under project no. PET2008_0158_02. The translation of this article was funded by the Universidad Politecnica de Valencia. en_EN
dc.format.extent 4 es_ES
dc.language Inglés es_ES
dc.publisher Maney Publishing es_ES
dc.relation.ispartof Powder Metallurgy es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bending strength es_ES
dc.subject Compression strength es_ES
dc.subject Porous Ti-6Al-4V es_ES
dc.subject Space holder es_ES
dc.subject Stiffness es_ES
dc.subject Bone implant es_ES
dc.subject Bone substitutes es_ES
dc.subject Compacting pressure es_ES
dc.subject Human cortical bone es_ES
dc.subject Porous titanium es_ES
dc.subject Production process es_ES
dc.subject Sintering time es_ES
dc.subject Solid material es_ES
dc.subject Space-holder method es_ES
dc.subject Stiffness variations es_ES
dc.subject Ti-6al-4v es_ES
dc.subject Aluminum es_ES
dc.subject Bone es_ES
dc.subject Compressive strength es_ES
dc.subject Sintering es_ES
dc.subject Titanium es_ES
dc.subject Titanium alloys es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Stiffness variation of porous titanium developed using space holder method es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1179/003258910X12707304455068
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PET2008_0158_02/ES/Desarrollo de componentes altamente porosos base titanio por vía pulvimetalúrgica/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Reig Cerdá, L.; Amigó Borrás, V.; Busquets Mataix, DJ.; Calero, JA. (2011). Stiffness variation of porous titanium developed using space holder method. Powder Metallurgy. 54(3):389-392. https://doi.org/10.1179/003258910X12707304455068 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1179/003258910X12707304455068 es_ES
dc.description.upvformatpinicio 389 es_ES
dc.description.upvformatpfin 392 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 54 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 217967
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references RYAN, G., PANDIT, A., & APATSIDIS, D. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27(13), 2651-2670. doi:10.1016/j.biomaterials.2005.12.002 es_ES
dc.description.references in ‘ASM handbook’, Vol. 2, ‘Properties and selection: nonferrous alloys and special-purpose materials’, 1170; 1990, Materials Park, OH, ASM International. es_ES
dc.description.references Asaoka, K., & Kon, M. (2003). Sintered Porous Titanium and Titanium Alloys as Advanced Biomaterials. Materials Science Forum, 426-432, 3079-3084. doi:10.4028/www.scientific.net/msf.426-432.3079 es_ES
dc.description.references Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30-42. doi:10.1016/j.jmbbm.2007.07.001 es_ES
dc.description.references Rack, H. J., & Qazi, J. I. (2006). Titanium alloys for biomedical applications. Materials Science and Engineering: C, 26(8), 1269-1277. doi:10.1016/j.msec.2005.08.032 es_ES
dc.description.references Köhl M, Bram M, Buckremer HP, Stöver D: Proc. Conf. Euro PM2007, Toulouse, France, October 2007, European Powder Metallurgy Association, 129–134. es_ES
dc.description.references Bram M, Bogdanski SH, Koller M, Buchkremer HP, Stover D: Proc. Conf. Euro PM2005, Prague, Czech Republic, October 2005, European Powder Metallurgy Association, 517–522. es_ES
dc.description.references Reig L, Amigó V, Busquets D, Salvador MD, Calero JA: Proc. Conf. Sintering 2008, La Jolla, CA, USA, November 2008, American Ceramic Society. 273–282. es_ES
dc.description.references Degischer, H., & Kriszt, B. (Eds.). (2002). Handbook of Cellular Metals. doi:10.1002/3527600558 es_ES
dc.description.references Comín M, Peris JL, Prat JM, Decoz JR, Vera PM, JV: Hoyos: ‘Biomecánica de la fractura ósea y técnicas de reparación’, 66–69; 1999, Valencia, Publicaciones UPV. es_ES
dc.description.references Gibson LJ, Ashby MF: ‘Cellular solids: structure and properties’, 175–231; 1999, Cambridge, Cambridge University Press. es_ES
dc.description.references Making metal foams. (2000). Metal Foams, 6-23. doi:10.1016/b978-075067219-1/50004-0 es_ES
dc.description.references Esen, Z., & Bor, Ş. (2007). Processing of titanium foams using magnesium spacer particles. Scripta Materialia, 56(5), 341-344. doi:10.1016/j.scriptamat.2006.11.010 es_ES
dc.description.references Leyens, C., & Peters, M. (Eds.). (2003). Titanium and Titanium Alloys. doi:10.1002/3527602119 es_ES
dc.description.references Lütjering G, Williams JC: ‘Titanium’, 2nd edn, 13–51; 2007, Berlin, Springer, Engineering Materials and Processes. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem