Mostrar el registro sencillo del ítem
dc.contributor.author | Reig Cerdá, Lucía | es_ES |
dc.contributor.author | Amigó Borrás, Vicente | es_ES |
dc.contributor.author | Busquets Mataix, David Jerónimo | es_ES |
dc.contributor.author | Calero, José Antonio | es_ES |
dc.date.accessioned | 2014-06-03T09:35:19Z | |
dc.date.issued | 2011-07 | |
dc.identifier.issn | 0032-5899 | |
dc.identifier.uri | http://hdl.handle.net/10251/37892 | |
dc.description.abstract | The excellent properties of Ti have resulted in its generalised use for bone implants. However, Ti is very stiff in comparison with human cortical bone, and this creates problems of bone weakening and loosening of the implant. This article discusses the mechanical properties (flexural and compressive strength, and stiffness) of porous Ti-6Al-4V specimens developed using the space holder method. These properties are examined relative to the production process parameters: compacting pressure and sintering time, as well as temperature, and the addition of spacer and its particle size. It is seen that when spacer is added, compressive strength decreases with the application of compacting pressure and that these are the most influential parameters. The developed pieces show a closed and unconnected porosity. Small additions of spacer (25 vol.-%) reduce stiffness to around half of that shown by the solid material, and the resulting pieces are strong enough to be used as bone substitute. © 2011 Institute of Materials, Minerals and Mining. | es_ES |
dc.description.sponsorship | The authors wish to thank the Spanish Ministry of Science and Innovation for the support received under project no. PET2008_0158_02. The translation of this article was funded by the Universidad Politecnica de Valencia. | en_EN |
dc.format.extent | 4 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Maney Publishing | es_ES |
dc.relation.ispartof | Powder Metallurgy | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bending strength | es_ES |
dc.subject | Compression strength | es_ES |
dc.subject | Porous Ti-6Al-4V | es_ES |
dc.subject | Space holder | es_ES |
dc.subject | Stiffness | es_ES |
dc.subject | Bone implant | es_ES |
dc.subject | Bone substitutes | es_ES |
dc.subject | Compacting pressure | es_ES |
dc.subject | Human cortical bone | es_ES |
dc.subject | Porous titanium | es_ES |
dc.subject | Production process | es_ES |
dc.subject | Sintering time | es_ES |
dc.subject | Solid material | es_ES |
dc.subject | Space-holder method | es_ES |
dc.subject | Stiffness variations | es_ES |
dc.subject | Ti-6al-4v | es_ES |
dc.subject | Aluminum | es_ES |
dc.subject | Bone | es_ES |
dc.subject | Compressive strength | es_ES |
dc.subject | Sintering | es_ES |
dc.subject | Titanium | es_ES |
dc.subject | Titanium alloys | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Stiffness variation of porous titanium developed using space holder method | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1179/003258910X12707304455068 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PET2008_0158_02/ES/Desarrollo de componentes altamente porosos base titanio por vía pulvimetalúrgica/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Reig Cerdá, L.; Amigó Borrás, V.; Busquets Mataix, DJ.; Calero, JA. (2011). Stiffness variation of porous titanium developed using space holder method. Powder Metallurgy. 54(3):389-392. https://doi.org/10.1179/003258910X12707304455068 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1179/003258910X12707304455068 | es_ES |
dc.description.upvformatpinicio | 389 | es_ES |
dc.description.upvformatpfin | 392 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 54 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 217967 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | RYAN, G., PANDIT, A., & APATSIDIS, D. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27(13), 2651-2670. doi:10.1016/j.biomaterials.2005.12.002 | es_ES |
dc.description.references | in ‘ASM handbook’, Vol. 2, ‘Properties and selection: nonferrous alloys and special-purpose materials’, 1170; 1990, Materials Park, OH, ASM International. | es_ES |
dc.description.references | Asaoka, K., & Kon, M. (2003). Sintered Porous Titanium and Titanium Alloys as Advanced Biomaterials. Materials Science Forum, 426-432, 3079-3084. doi:10.4028/www.scientific.net/msf.426-432.3079 | es_ES |
dc.description.references | Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30-42. doi:10.1016/j.jmbbm.2007.07.001 | es_ES |
dc.description.references | Rack, H. J., & Qazi, J. I. (2006). Titanium alloys for biomedical applications. Materials Science and Engineering: C, 26(8), 1269-1277. doi:10.1016/j.msec.2005.08.032 | es_ES |
dc.description.references | Köhl M, Bram M, Buckremer HP, Stöver D: Proc. Conf. Euro PM2007, Toulouse, France, October 2007, European Powder Metallurgy Association, 129–134. | es_ES |
dc.description.references | Bram M, Bogdanski SH, Koller M, Buchkremer HP, Stover D: Proc. Conf. Euro PM2005, Prague, Czech Republic, October 2005, European Powder Metallurgy Association, 517–522. | es_ES |
dc.description.references | Reig L, Amigó V, Busquets D, Salvador MD, Calero JA: Proc. Conf. Sintering 2008, La Jolla, CA, USA, November 2008, American Ceramic Society. 273–282. | es_ES |
dc.description.references | Degischer, H., & Kriszt, B. (Eds.). (2002). Handbook of Cellular Metals. doi:10.1002/3527600558 | es_ES |
dc.description.references | Comín M, Peris JL, Prat JM, Decoz JR, Vera PM, JV: Hoyos: ‘Biomecánica de la fractura ósea y técnicas de reparación’, 66–69; 1999, Valencia, Publicaciones UPV. | es_ES |
dc.description.references | Gibson LJ, Ashby MF: ‘Cellular solids: structure and properties’, 175–231; 1999, Cambridge, Cambridge University Press. | es_ES |
dc.description.references | Making metal foams. (2000). Metal Foams, 6-23. doi:10.1016/b978-075067219-1/50004-0 | es_ES |
dc.description.references | Esen, Z., & Bor, Ş. (2007). Processing of titanium foams using magnesium spacer particles. Scripta Materialia, 56(5), 341-344. doi:10.1016/j.scriptamat.2006.11.010 | es_ES |
dc.description.references | Leyens, C., & Peters, M. (Eds.). (2003). Titanium and Titanium Alloys. doi:10.1002/3527602119 | es_ES |
dc.description.references | Lütjering G, Williams JC: ‘Titanium’, 2nd edn, 13–51; 2007, Berlin, Springer, Engineering Materials and Processes. | es_ES |