- -

Stiffness variation of porous titanium developed using space holder method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stiffness variation of porous titanium developed using space holder method

Mostrar el registro completo del ítem

Reig Cerdá, L.; Amigó Borrás, V.; Busquets Mataix, DJ.; Calero, JA. (2011). Stiffness variation of porous titanium developed using space holder method. Powder Metallurgy. 54(3):389-392. https://doi.org/10.1179/003258910X12707304455068

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37892

Ficheros en el ítem

Metadatos del ítem

Título: Stiffness variation of porous titanium developed using space holder method
Autor: Reig Cerdá, Lucía Amigó Borrás, Vicente Busquets Mataix, David Jerónimo Calero, José Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
The excellent properties of Ti have resulted in its generalised use for bone implants. However, Ti is very stiff in comparison with human cortical bone, and this creates problems of bone weakening and loosening of the ...[+]
Palabras clave: Bending strength , Compression strength , Porous Ti-6Al-4V , Space holder , Stiffness , Bone implant , Bone substitutes , Compacting pressure , Human cortical bone , Porous titanium , Production process , Sintering time , Solid material , Space-holder method , Stiffness variations , Ti-6al-4v , Aluminum , Bone , Compressive strength , Sintering , Titanium , Titanium alloys
Derechos de uso: Reserva de todos los derechos
Fuente:
Powder Metallurgy. (issn: 0032-5899 )
DOI: 10.1179/003258910X12707304455068
Editorial:
Maney Publishing
Versión del editor: http://dx.doi.org/10.1179/003258910X12707304455068
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//PET2008_0158_02/ES/Desarrollo de componentes altamente porosos base titanio por vía pulvimetalúrgica/
Agradecimientos:
The authors wish to thank the Spanish Ministry of Science and Innovation for the support received under project no. PET2008_0158_02. The translation of this article was funded by the Universidad Politecnica de Valencia.
Tipo: Artículo

References

RYAN, G., PANDIT, A., & APATSIDIS, D. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27(13), 2651-2670. doi:10.1016/j.biomaterials.2005.12.002

in ‘ASM handbook’, Vol. 2, ‘Properties and selection: nonferrous alloys and special-purpose materials’, 1170; 1990, Materials Park, OH, ASM International.

Asaoka, K., & Kon, M. (2003). Sintered Porous Titanium and Titanium Alloys as Advanced Biomaterials. Materials Science Forum, 426-432, 3079-3084. doi:10.4028/www.scientific.net/msf.426-432.3079 [+]
RYAN, G., PANDIT, A., & APATSIDIS, D. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27(13), 2651-2670. doi:10.1016/j.biomaterials.2005.12.002

in ‘ASM handbook’, Vol. 2, ‘Properties and selection: nonferrous alloys and special-purpose materials’, 1170; 1990, Materials Park, OH, ASM International.

Asaoka, K., & Kon, M. (2003). Sintered Porous Titanium and Titanium Alloys as Advanced Biomaterials. Materials Science Forum, 426-432, 3079-3084. doi:10.4028/www.scientific.net/msf.426-432.3079

Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30-42. doi:10.1016/j.jmbbm.2007.07.001

Rack, H. J., & Qazi, J. I. (2006). Titanium alloys for biomedical applications. Materials Science and Engineering: C, 26(8), 1269-1277. doi:10.1016/j.msec.2005.08.032

Köhl M, Bram M, Buckremer HP, Stöver D: Proc. Conf. Euro PM2007, Toulouse, France, October 2007, European Powder Metallurgy Association, 129–134.

Bram M, Bogdanski SH, Koller M, Buchkremer HP, Stover D: Proc. Conf. Euro PM2005, Prague, Czech Republic, October 2005, European Powder Metallurgy Association, 517–522.

Reig L, Amigó V, Busquets D, Salvador MD, Calero JA: Proc. Conf. Sintering 2008, La Jolla, CA, USA, November 2008, American Ceramic Society. 273–282.

Degischer, H., & Kriszt, B. (Eds.). (2002). Handbook of Cellular Metals. doi:10.1002/3527600558

Comín M, Peris JL, Prat JM, Decoz JR, Vera PM, JV: Hoyos: ‘Biomecánica de la fractura ósea y técnicas de reparación’, 66–69; 1999, Valencia, Publicaciones UPV.

Gibson LJ, Ashby MF: ‘Cellular solids: structure and properties’, 175–231; 1999, Cambridge, Cambridge University Press.

Making metal foams. (2000). Metal Foams, 6-23. doi:10.1016/b978-075067219-1/50004-0

Esen, Z., & Bor, Ş. (2007). Processing of titanium foams using magnesium spacer particles. Scripta Materialia, 56(5), 341-344. doi:10.1016/j.scriptamat.2006.11.010

Leyens, C., & Peters, M. (Eds.). (2003). Titanium and Titanium Alloys. doi:10.1002/3527602119

Lütjering G, Williams JC: ‘Titanium’, 2nd edn, 13–51; 2007, Berlin, Springer, Engineering Materials and Processes.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem