Mostrar el registro sencillo del ítem
dc.contributor.author | Leiva Torres, Luis Alberto | es_ES |
dc.contributor.author | Vidal, Enrique | es_ES |
dc.date.accessioned | 2014-06-19T07:39:15Z | |
dc.date.issued | 2013-07-10 | |
dc.identifier.issn | 0020-0255 | |
dc.identifier.uri | http://hdl.handle.net/10251/38225 | |
dc.description.abstract | [EN] Many devices generate large amounts of data that follow some sort of sequentiality, e.g., motion sensors, e-pens, eye trackers, etc. and often these data need to be compressed for classification, storage, and/or retrieval tasks. Traditional clustering algorithms can be used for this purpose, but unfortunately they do not cope with the sequential information implicitly embedded in such data. Thus, we revisit the well-known K-means algorithm and provide a general method to properly cluster sequentially-distributed data. We present Warped K-Means (WKM), a multi-purpose partitional clustering procedure that minimizes the sum of squared error criterion, while imposing a hard sequentiality constraint in the classification step. We illustrate the properties of WKM in three applications, one being the segmentation and classification of human activity. WKM outperformed five state-of- the-art clustering techniques to simplify data trajectories, achieving a recognition accuracy of near 97%, which is an improvement of around 66% over their peers. Moreover, such an improvement came with a reduction in the computational cost of more than one order of magnitude. | es_ES |
dc.description.sponsorship | This work has been partially supported by Casmacat (FP7-ICT-2011-7, Project 287576), tranScriptorium (FP7-ICT-2011-9, Project 600707), STraDA (MINECO, TIN2012-37475-0O2-01), and ALMPR (GVA, Prometeo/20091014) projects. | en_EN |
dc.format.extent | 15 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Information Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Partitional clustering | es_ES |
dc.subject | Sequential data | es_ES |
dc.subject | Trajectory segmentation | es_ES |
dc.subject | Data compression | es_ES |
dc.subject | Data simplification | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Warped K-Means: An algorithm to cluster sequentially-distributed data | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1016/j.ins.2013.02.042 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/287576/EU/Cognitive Analysis and Statistical Methods for Advanced Computer Aided Translation/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2012-37475-C02-01/ES/SEARCH IN TRANSCRIBED MANUSCRIPTS AND DOCUMENT AUGMENTATION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/600707/EU/tranScriptorium/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F014/ES/Adaptive learning and multimodality in pattern recognition (Almapater)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica | es_ES |
dc.description.bibliographicCitation | Leiva Torres, LA.; Vidal, E. (2013). Warped K-Means: An algorithm to cluster sequentially-distributed data. Information Sciences. 237:196-210. https://doi.org/10.1016/j.ins.2013.02.042 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.ins.2013.02.042 | es_ES |
dc.description.upvformatpinicio | 196 | es_ES |
dc.description.upvformatpfin | 210 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 237 | es_ES |
dc.relation.senia | 254449 | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | Generalitat Valenciana |