- -

Warped K-Means: An algorithm to cluster sequentially-distributed data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Warped K-Means: An algorithm to cluster sequentially-distributed data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Leiva Torres, Luis Alberto es_ES
dc.contributor.author Vidal, Enrique es_ES
dc.date.accessioned 2014-06-19T07:39:15Z
dc.date.issued 2013-07-10
dc.identifier.issn 0020-0255
dc.identifier.uri http://hdl.handle.net/10251/38225
dc.description.abstract [EN] Many devices generate large amounts of data that follow some sort of sequentiality, e.g., motion sensors, e-pens, eye trackers, etc. and often these data need to be compressed for classification, storage, and/or retrieval tasks. Traditional clustering algorithms can be used for this purpose, but unfortunately they do not cope with the sequential information implicitly embedded in such data. Thus, we revisit the well-known K-means algorithm and provide a general method to properly cluster sequentially-distributed data. We present Warped K-Means (WKM), a multi-purpose partitional clustering procedure that minimizes the sum of squared error criterion, while imposing a hard sequentiality constraint in the classification step. We illustrate the properties of WKM in three applications, one being the segmentation and classification of human activity. WKM outperformed five state-of- the-art clustering techniques to simplify data trajectories, achieving a recognition accuracy of near 97%, which is an improvement of around 66% over their peers. Moreover, such an improvement came with a reduction in the computational cost of more than one order of magnitude. es_ES
dc.description.sponsorship This work has been partially supported by Casmacat (FP7-ICT-2011-7, Project 287576), tranScriptorium (FP7-ICT-2011-9, Project 600707), STraDA (MINECO, TIN2012-37475-0O2-01), and ALMPR (GVA, Prometeo/20091014) projects. en_EN
dc.format.extent 15 es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Information Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Partitional clustering es_ES
dc.subject Sequential data es_ES
dc.subject Trajectory segmentation es_ES
dc.subject Data compression es_ES
dc.subject Data simplification es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Warped K-Means: An algorithm to cluster sequentially-distributed data es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1016/j.ins.2013.02.042
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/287576/EU/Cognitive Analysis and Statistical Methods for Advanced Computer Aided Translation/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2012-37475-C02-01/ES/SEARCH IN TRANSCRIBED MANUSCRIPTS AND DOCUMENT AUGMENTATION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/600707/EU/tranScriptorium/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F014/ES/Adaptive learning and multimodality in pattern recognition (Almapater)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica es_ES
dc.description.bibliographicCitation Leiva Torres, LA.; Vidal, E. (2013). Warped K-Means: An algorithm to cluster sequentially-distributed data. Information Sciences. 237:196-210. https://doi.org/10.1016/j.ins.2013.02.042 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.ins.2013.02.042 es_ES
dc.description.upvformatpinicio 196 es_ES
dc.description.upvformatpfin 210 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 237 es_ES
dc.relation.senia 254449
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Generalitat Valenciana


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem