Mostrar el registro sencillo del ítem
dc.contributor.author | Queralt-Martín, María | es_ES |
dc.contributor.author | García Giménez, Elena | es_ES |
dc.contributor.author | Aguilella, Vicente-Manuel | es_ES |
dc.contributor.author | Ramirez Hoyos, Patricio | es_ES |
dc.contributor.author | Mafé, Salvador | es_ES |
dc.contributor.author | Alcaraz González, Antonio | es_ES |
dc.date.accessioned | 2014-06-24T12:58:45Z | |
dc.date.issued | 2013-07 | |
dc.identifier.issn | 0003-6951 | |
dc.identifier.uri | http://hdl.handle.net/10251/38330 | |
dc.description.abstract | We show experimentally and theoretically that significant currents can be obtained with a biological ion channel, the OmpF porin of Escherichia coli, using zero-average potentials as driving forces. The channel rectifying properties can be used to pump potassium ions against an external concentration gradient under asymmetric pH conditions. The results are discussed in terms of the ionic selectivity and rectification ratio of the channel. The physical concepts involved may be applied to separation processes with synthetic nanopores and to bioelectrical phenomena. (C) 2013 AIP Publishing LLC. | es_ES |
dc.description.sponsorship | The authors acknowledge Marcel Aguilella-Arzo and Vicente Gomez for assistance in the preparation of the artwork. Financial support from the Generalitat Valenciana (Project PROMETEO/GV/0069), the Ministry of Economy and Competitiveness of Spain (Project Nos. FIS2010-19810 and MAT2012-32084), Fundacio Caixa Castello-Bancaixa (Project No. P1-1B2012-03), and FEDER is also acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics (AIP) | es_ES |
dc.relation.ispartof | Applied Physics Letters | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | RATCHET | es_ES |
dc.subject | NANOFLUIDIC DIODE | es_ES |
dc.subject | SELECTIVITY | es_ES |
dc.subject | RECTIFICATION | es_ES |
dc.subject | NANOPORES | es_ES |
dc.subject | PORIN | es_ES |
dc.subject | OMPF | es_ES |
dc.subject | VOLTAGE | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1063/1.4816748 | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F069/ES/COOPERATIVIDAD Y VARIABILIDAD EN NANOESTRUCTURAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FIS2010-19810/ES/BIOFISICA MOLECULAR DE CANALES IONICOS CON INTERFASES CARGADAS: MEDIDAS ELECTROFISIOLOGICAS Y MODELIZACION MOLECULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//P1·1B2012-03/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Queralt-Martín, M.; García Giménez, E.; Aguilella, V.; Ramirez Hoyos, P.; Mafé, S.; Alcaraz González, A. (2013). Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel. Applied Physics Letters. 103:43707-43711. https://doi.org/10.1063/1.4816748 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1063/1.4816748 | es_ES |
dc.description.upvformatpinicio | 43707 | es_ES |
dc.description.upvformatpfin | 43711 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 103 | es_ES |
dc.relation.senia | 255514 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Jaume I | es_ES |
dc.contributor.funder | Fundació Caixa Castelló - Bancaixa | |
dc.description.references | Astumian, R. D., & Hänggi, P. (2002). Brownian Motors. Physics Today, 55(11), 33-39. doi:10.1063/1.1535005 | es_ES |
dc.description.references | Chialvo, D. R., & Millonas, M. M. (1995). Asymmetric unbiased fluctuations are sufficient for the operation of a correlation ratchet. Physics Letters A, 209(1-2), 26-30. doi:10.1016/0375-9601(95)00773-0 | es_ES |
dc.description.references | Siwy, Z., & Fuliński, A. (2002). Fabrication of a Synthetic Nanopore Ion Pump. Physical Review Letters, 89(19). doi:10.1103/physrevlett.89.198103 | es_ES |
dc.description.references | Siwy, Z., & Fuliński, A. (2004). A nanodevice for rectification and pumping ions. American Journal of Physics, 72(5), 567-574. doi:10.1119/1.1648328 | es_ES |
dc.description.references | Ramirez, P., Ali, M., Ensinger, W., & Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters, 101(13), 133108. doi:10.1063/1.4754845 | es_ES |
dc.description.references | Verdiá-Báguena, C., Queralt-Martín, M., Aguilella, V. M., & Alcaraz, A. (2012). Protein Ion Channels as Molecular Ratchets. Switchable Current Modulation in Outer Membrane Protein F Porin Induced by Millimolar La3+ Ions. The Journal of Physical Chemistry C, 116(11), 6537-6542. doi:10.1021/jp210790r | es_ES |
dc.description.references | Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797 | es_ES |
dc.description.references | Cervera, J., Alcaraz, A., Schiedt, B., Neumann, R., & Ramírez, P. (2007). Asymmetric Selectivity of Synthetic Conical Nanopores Probed by Reversal Potential Measurements. The Journal of Physical Chemistry C, 111(33), 12265-12273. doi:10.1021/jp071884c | es_ES |
dc.description.references | Griess, G. A., Rogers, E., & Serwer, P. (2001). Application of the concept of an electrophoretic ratchet. ELECTROPHORESIS, 22(6), 981-989. doi:10.1002/1522-2683()22:6<981::aid-elps981>3.0.co;2-x | es_ES |
dc.description.references | Eijkel, J. C. T., & Berg, A. van den. (2005). Nanofluidics: what is it and what can we expect from it? Microfluidics and Nanofluidics, 1(3), 249-267. doi:10.1007/s10404-004-0012-9 | es_ES |
dc.description.references | Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056 | es_ES |
dc.description.references | Astumian, R. D., Weaver, J. C., & Adair, R. K. (1995). Rectification and signal averaging of weak electric fields by biological cells. Proceedings of the National Academy of Sciences, 92(9), 3740-3743. doi:10.1073/pnas.92.9.3740 | es_ES |
dc.description.references | Blackiston, D. J., McLaughlin, K. A., & Levin, M. (2009). Bioelectric controls of cell proliferation: Ion channels, membrane voltage and the cell cycle. Cell Cycle, 8(21), 3527-3536. doi:10.4161/cc.8.21.9888 | es_ES |
dc.description.references | Manzanares, J. A., Cervera, J., & Mafé, S. (2011). Processing weak electrical signals with threshold-potential nanostructures showing a high variability. Applied Physics Letters, 99(15), 153703. doi:10.1063/1.3650712 | es_ES |
dc.description.references | Levin, M., & Stevenson, C. G. (2012). Regulation of Cell Behavior and Tissue Patterning by Bioelectrical Signals: Challenges and Opportunities for Biomedical Engineering. Annual Review of Biomedical Engineering, 14(1), 295-323. doi:10.1146/annurev-bioeng-071811-150114 | es_ES |
dc.description.references | Alcaraz, A., Ramírez, P., García-Giménez, E., López, M. L., Andrio, A., & Aguilella, V. M. (2006). A pH-Tunable Nanofluidic Diode: Electrochemical Rectification in a Reconstituted Single Ion Channel. The Journal of Physical Chemistry B, 110(42), 21205-21209. doi:10.1021/jp063204w | es_ES |
dc.description.references | García-Giménez, E., Alcaraz, A., Aguilella, V. M., & Ramírez, P. (2009). Directional ion selectivity in a biological nanopore with bipolar structure. Journal of Membrane Science, 331(1-2), 137-142. doi:10.1016/j.memsci.2009.01.026 | es_ES |
dc.description.references | Miedema, H., Vrouenraets, M., Wierenga, J., Meijberg, W., Robillard, G., & Eisenberg, B. (2007). A Biological Porin Engineered into a Molecular, Nanofluidic Diode. Nano Letters, 7(9), 2886-2891. doi:10.1021/nl0716808 | es_ES |
dc.description.references | Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2(4), 209-215. doi:10.1038/nnano.2007.27 | es_ES |
dc.description.references | Maglia, G., Heron, A. J., Hwang, W. L., Holden, M. A., Mikhailova, E., Li, Q., … Bayley, H. (2009). Droplet networks with incorporated protein diodes show collective properties. Nature Nanotechnology, 4(7), 437-440. doi:10.1038/nnano.2009.121 | es_ES |
dc.description.references | Gabrielsson, E. O., Tybrandt, K., & Berggren, M. (2012). Ion diode logics for pH control. Lab on a Chip, 12(14), 2507. doi:10.1039/c2lc40093f | es_ES |
dc.description.references | Macrae, M. X., Blake, S., Jiang, X., Capone, R., Estes, D. J., Mayer, M., & Yang, J. (2009). A Semi-Synthetic Ion Channel Platform for Detection of Phosphatase and Protease Activity. ACS Nano, 3(11), 3567-3580. doi:10.1021/nn901231h | es_ES |
dc.description.references | Wilson, N. A., Abu-Shumays, R., Gyarfas, B., Wang, H., Lieberman, K. R., Akeson, M., & Dunbar, W. B. (2009). Electronic Control of DNA Polymerase Binding and Unbinding to Single DNA Molecules. ACS Nano, 3(4), 995-1003. doi:10.1021/nn9000897 | es_ES |
dc.description.references | Alcaraz, A., Nestorovich, E. M., Aguilella-Arzo, M., Aguilella, V. M., & Bezrukov, S. M. (2004). Salting Out the Ionic Selectivity of a Wide Channel: The Asymmetry of OmpF. Biophysical Journal, 87(2), 943-957. doi:10.1529/biophysj.104/043414 | es_ES |
dc.description.references | Cowan, S. W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R. A., … Rosenbusch, J. P. (1992). Crystal structures explain functional properties of two E. coli porins. Nature, 358(6389), 727-733. doi:10.1038/358727a0 | es_ES |
dc.description.references | Nestorovich, E. M., Rostovtseva, T. K., & Bezrukov, S. M. (2003). Residue Ionization and Ion Transport through OmpF Channels. Biophysical Journal, 85(6), 3718-3729. doi:10.1016/s0006-3495(03)74788-2 | es_ES |
dc.description.references | Alcaraz, A., Ramı́rez, P., Mafé, S., Holdik, H., & Bauer, B. (2000). Ion selectivity and water dissociation in polymer bipolar membranes studied by membrane potential and current–voltage measurements. Polymer, 41(17), 6627-6634. doi:10.1016/s0032-3861(99)00886-1 | es_ES |
dc.description.references | Aguilella-Arzo, M., García-Celma, J. J., Cervera, J., Alcaraz, A., & Aguilella, V. M. (2007). Electrostatic properties and macroscopic electrodiffusion in OmpF porin and mutants. Bioelectrochemistry, 70(2), 320-327. doi:10.1016/j.bioelechem.2006.04.005 | es_ES |
dc.description.references | Ramirez, P., Gomez, V., Ali, M., Ensinger, W., & Mafe, S. (2013). Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochemistry Communications, 31, 137-140. doi:10.1016/j.elecom.2013.03.026 | es_ES |