- -

Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Queralt-Martín, María es_ES
dc.contributor.author García Giménez, Elena es_ES
dc.contributor.author Aguilella, Vicente-Manuel es_ES
dc.contributor.author Ramirez Hoyos, Patricio es_ES
dc.contributor.author Mafé, Salvador es_ES
dc.contributor.author Alcaraz González, Antonio es_ES
dc.date.accessioned 2014-06-24T12:58:45Z
dc.date.issued 2013-07
dc.identifier.issn 0003-6951
dc.identifier.uri http://hdl.handle.net/10251/38330
dc.description.abstract We show experimentally and theoretically that significant currents can be obtained with a biological ion channel, the OmpF porin of Escherichia coli, using zero-average potentials as driving forces. The channel rectifying properties can be used to pump potassium ions against an external concentration gradient under asymmetric pH conditions. The results are discussed in terms of the ionic selectivity and rectification ratio of the channel. The physical concepts involved may be applied to separation processes with synthetic nanopores and to bioelectrical phenomena. (C) 2013 AIP Publishing LLC. es_ES
dc.description.sponsorship The authors acknowledge Marcel Aguilella-Arzo and Vicente Gomez for assistance in the preparation of the artwork. Financial support from the Generalitat Valenciana (Project PROMETEO/GV/0069), the Ministry of Economy and Competitiveness of Spain (Project Nos. FIS2010-19810 and MAT2012-32084), Fundacio Caixa Castello-Bancaixa (Project No. P1-1B2012-03), and FEDER is also acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Applied Physics Letters es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject RATCHET es_ES
dc.subject NANOFLUIDIC DIODE es_ES
dc.subject SELECTIVITY es_ES
dc.subject RECTIFICATION es_ES
dc.subject NANOPORES es_ES
dc.subject PORIN es_ES
dc.subject OMPF es_ES
dc.subject VOLTAGE es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1063/1.4816748
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F069/ES/COOPERATIVIDAD Y VARIABILIDAD EN NANOESTRUCTURAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2010-19810/ES/BIOFISICA MOLECULAR DE CANALES IONICOS CON INTERFASES CARGADAS: MEDIDAS ELECTROFISIOLOGICAS Y MODELIZACION MOLECULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//P1·1B2012-03/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Queralt-Martín, M.; García Giménez, E.; Aguilella, V.; Ramirez Hoyos, P.; Mafé, S.; Alcaraz González, A. (2013). Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel. Applied Physics Letters. 103:43707-43711. https://doi.org/10.1063/1.4816748 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4816748 es_ES
dc.description.upvformatpinicio 43707 es_ES
dc.description.upvformatpfin 43711 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 103 es_ES
dc.relation.senia 255514
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Jaume I es_ES
dc.contributor.funder Fundació Caixa Castelló - Bancaixa
dc.description.references Astumian, R. D., & Hänggi, P. (2002). Brownian Motors. Physics Today, 55(11), 33-39. doi:10.1063/1.1535005 es_ES
dc.description.references Chialvo, D. R., & Millonas, M. M. (1995). Asymmetric unbiased fluctuations are sufficient for the operation of a correlation ratchet. Physics Letters A, 209(1-2), 26-30. doi:10.1016/0375-9601(95)00773-0 es_ES
dc.description.references Siwy, Z., & Fuliński, A. (2002). Fabrication of a Synthetic Nanopore Ion Pump. Physical Review Letters, 89(19). doi:10.1103/physrevlett.89.198103 es_ES
dc.description.references Siwy, Z., & Fuliński, A. (2004). A nanodevice for rectification and pumping ions. American Journal of Physics, 72(5), 567-574. doi:10.1119/1.1648328 es_ES
dc.description.references Ramirez, P., Ali, M., Ensinger, W., & Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters, 101(13), 133108. doi:10.1063/1.4754845 es_ES
dc.description.references Verdiá-Báguena, C., Queralt-Martín, M., Aguilella, V. M., & Alcaraz, A. (2012). Protein Ion Channels as Molecular Ratchets. Switchable Current Modulation in Outer Membrane Protein F Porin Induced by Millimolar La3+ Ions. The Journal of Physical Chemistry C, 116(11), 6537-6542. doi:10.1021/jp210790r es_ES
dc.description.references Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797 es_ES
dc.description.references Cervera, J., Alcaraz, A., Schiedt, B., Neumann, R., & Ramírez, P. (2007). Asymmetric Selectivity of Synthetic Conical Nanopores Probed by Reversal Potential Measurements. The Journal of Physical Chemistry C, 111(33), 12265-12273. doi:10.1021/jp071884c es_ES
dc.description.references Griess, G. A., Rogers, E., & Serwer, P. (2001). Application of the concept of an electrophoretic ratchet. ELECTROPHORESIS, 22(6), 981-989. doi:10.1002/1522-2683()22:6<981::aid-elps981>3.0.co;2-x es_ES
dc.description.references Eijkel, J. C. T., & Berg, A. van den. (2005). Nanofluidics: what is it and what can we expect from it? Microfluidics and Nanofluidics, 1(3), 249-267. doi:10.1007/s10404-004-0012-9 es_ES
dc.description.references Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056 es_ES
dc.description.references Astumian, R. D., Weaver, J. C., & Adair, R. K. (1995). Rectification and signal averaging of weak electric fields by biological cells. Proceedings of the National Academy of Sciences, 92(9), 3740-3743. doi:10.1073/pnas.92.9.3740 es_ES
dc.description.references Blackiston, D. J., McLaughlin, K. A., & Levin, M. (2009). Bioelectric controls of cell proliferation: Ion channels, membrane voltage and the cell cycle. Cell Cycle, 8(21), 3527-3536. doi:10.4161/cc.8.21.9888 es_ES
dc.description.references Manzanares, J. A., Cervera, J., & Mafé, S. (2011). Processing weak electrical signals with threshold-potential nanostructures showing a high variability. Applied Physics Letters, 99(15), 153703. doi:10.1063/1.3650712 es_ES
dc.description.references Levin, M., & Stevenson, C. G. (2012). Regulation of Cell Behavior and Tissue Patterning by Bioelectrical Signals: Challenges and Opportunities for Biomedical Engineering. Annual Review of Biomedical Engineering, 14(1), 295-323. doi:10.1146/annurev-bioeng-071811-150114 es_ES
dc.description.references Alcaraz, A., Ramírez, P., García-Giménez, E., López, M. L., Andrio, A., & Aguilella, V. M. (2006). A pH-Tunable Nanofluidic Diode:  Electrochemical Rectification in a Reconstituted Single Ion Channel. The Journal of Physical Chemistry B, 110(42), 21205-21209. doi:10.1021/jp063204w es_ES
dc.description.references García-Giménez, E., Alcaraz, A., Aguilella, V. M., & Ramírez, P. (2009). Directional ion selectivity in a biological nanopore with bipolar structure. Journal of Membrane Science, 331(1-2), 137-142. doi:10.1016/j.memsci.2009.01.026 es_ES
dc.description.references Miedema, H., Vrouenraets, M., Wierenga, J., Meijberg, W., Robillard, G., & Eisenberg, B. (2007). A Biological Porin Engineered into a Molecular, Nanofluidic Diode. Nano Letters, 7(9), 2886-2891. doi:10.1021/nl0716808 es_ES
dc.description.references Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2(4), 209-215. doi:10.1038/nnano.2007.27 es_ES
dc.description.references Maglia, G., Heron, A. J., Hwang, W. L., Holden, M. A., Mikhailova, E., Li, Q., … Bayley, H. (2009). Droplet networks with incorporated protein diodes show collective properties. Nature Nanotechnology, 4(7), 437-440. doi:10.1038/nnano.2009.121 es_ES
dc.description.references Gabrielsson, E. O., Tybrandt, K., & Berggren, M. (2012). Ion diode logics for pH control. Lab on a Chip, 12(14), 2507. doi:10.1039/c2lc40093f es_ES
dc.description.references Macrae, M. X., Blake, S., Jiang, X., Capone, R., Estes, D. J., Mayer, M., & Yang, J. (2009). A Semi-Synthetic Ion Channel Platform for Detection of Phosphatase and Protease Activity. ACS Nano, 3(11), 3567-3580. doi:10.1021/nn901231h es_ES
dc.description.references Wilson, N. A., Abu-Shumays, R., Gyarfas, B., Wang, H., Lieberman, K. R., Akeson, M., & Dunbar, W. B. (2009). Electronic Control of DNA Polymerase Binding and Unbinding to Single DNA Molecules. ACS Nano, 3(4), 995-1003. doi:10.1021/nn9000897 es_ES
dc.description.references Alcaraz, A., Nestorovich, E. M., Aguilella-Arzo, M., Aguilella, V. M., & Bezrukov, S. M. (2004). Salting Out the Ionic Selectivity of a Wide Channel: The Asymmetry of OmpF. Biophysical Journal, 87(2), 943-957. doi:10.1529/biophysj.104/043414 es_ES
dc.description.references Cowan, S. W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R. A., … Rosenbusch, J. P. (1992). Crystal structures explain functional properties of two E. coli porins. Nature, 358(6389), 727-733. doi:10.1038/358727a0 es_ES
dc.description.references Nestorovich, E. M., Rostovtseva, T. K., & Bezrukov, S. M. (2003). Residue Ionization and Ion Transport through OmpF Channels. Biophysical Journal, 85(6), 3718-3729. doi:10.1016/s0006-3495(03)74788-2 es_ES
dc.description.references Alcaraz, A., Ramı́rez, P., Mafé, S., Holdik, H., & Bauer, B. (2000). Ion selectivity and water dissociation in polymer bipolar membranes studied by membrane potential and current–voltage measurements. Polymer, 41(17), 6627-6634. doi:10.1016/s0032-3861(99)00886-1 es_ES
dc.description.references Aguilella-Arzo, M., García-Celma, J. J., Cervera, J., Alcaraz, A., & Aguilella, V. M. (2007). Electrostatic properties and macroscopic electrodiffusion in OmpF porin and mutants. Bioelectrochemistry, 70(2), 320-327. doi:10.1016/j.bioelechem.2006.04.005 es_ES
dc.description.references Ramirez, P., Gomez, V., Ali, M., Ensinger, W., & Mafe, S. (2013). Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochemistry Communications, 31, 137-140. doi:10.1016/j.elecom.2013.03.026 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem