- -

Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel

Mostrar el registro completo del ítem

Queralt-Martín, M.; García Giménez, E.; Aguilella, V.; Ramirez Hoyos, P.; Mafé, S.; Alcaraz González, A. (2013). Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel. Applied Physics Letters. 103:43707-43711. https://doi.org/10.1063/1.4816748

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/38330

Ficheros en el ítem

Metadatos del ítem

Título: Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel
Autor: Queralt-Martín, María García Giménez, Elena Aguilella, Vicente-Manuel Ramirez Hoyos, Patricio Mafé, Salvador Alcaraz González, Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
We show experimentally and theoretically that significant currents can be obtained with a biological ion channel, the OmpF porin of Escherichia coli, using zero-average potentials as driving forces. The channel rectifying ...[+]
Palabras clave: RATCHET , NANOFLUIDIC DIODE , SELECTIVITY , RECTIFICATION , NANOPORES , PORIN , OMPF , VOLTAGE
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Physics Letters. (issn: 0003-6951 )
DOI: 10.1063/1.4816748
Editorial:
American Institute of Physics (AIP)
Versión del editor: http://dx.doi.org/10.1063/1.4816748
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F069/ES/COOPERATIVIDAD Y VARIABILIDAD EN NANOESTRUCTURAS/
info:eu-repo/grantAgreement/MICINN//FIS2010-19810/ES/BIOFISICA MOLECULAR DE CANALES IONICOS CON INTERFASES CARGADAS: MEDIDAS ELECTROFISIOLOGICAS Y MODELIZACION MOLECULAR/
info:eu-repo/grantAgreement/UJI//P1·1B2012-03/
Agradecimientos:
The authors acknowledge Marcel Aguilella-Arzo and Vicente Gomez for assistance in the preparation of the artwork. Financial support from the Generalitat Valenciana (Project PROMETEO/GV/0069), the Ministry of Economy and ...[+]
Tipo: Artículo

References

Astumian, R. D., & Hänggi, P. (2002). Brownian Motors. Physics Today, 55(11), 33-39. doi:10.1063/1.1535005

Chialvo, D. R., & Millonas, M. M. (1995). Asymmetric unbiased fluctuations are sufficient for the operation of a correlation ratchet. Physics Letters A, 209(1-2), 26-30. doi:10.1016/0375-9601(95)00773-0

Siwy, Z., & Fuliński, A. (2002). Fabrication of a Synthetic Nanopore Ion Pump. Physical Review Letters, 89(19). doi:10.1103/physrevlett.89.198103 [+]
Astumian, R. D., & Hänggi, P. (2002). Brownian Motors. Physics Today, 55(11), 33-39. doi:10.1063/1.1535005

Chialvo, D. R., & Millonas, M. M. (1995). Asymmetric unbiased fluctuations are sufficient for the operation of a correlation ratchet. Physics Letters A, 209(1-2), 26-30. doi:10.1016/0375-9601(95)00773-0

Siwy, Z., & Fuliński, A. (2002). Fabrication of a Synthetic Nanopore Ion Pump. Physical Review Letters, 89(19). doi:10.1103/physrevlett.89.198103

Siwy, Z., & Fuliński, A. (2004). A nanodevice for rectification and pumping ions. American Journal of Physics, 72(5), 567-574. doi:10.1119/1.1648328

Ramirez, P., Ali, M., Ensinger, W., & Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters, 101(13), 133108. doi:10.1063/1.4754845

Verdiá-Báguena, C., Queralt-Martín, M., Aguilella, V. M., & Alcaraz, A. (2012). Protein Ion Channels as Molecular Ratchets. Switchable Current Modulation in Outer Membrane Protein F Porin Induced by Millimolar La3+ Ions. The Journal of Physical Chemistry C, 116(11), 6537-6542. doi:10.1021/jp210790r

Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797

Cervera, J., Alcaraz, A., Schiedt, B., Neumann, R., & Ramírez, P. (2007). Asymmetric Selectivity of Synthetic Conical Nanopores Probed by Reversal Potential Measurements. The Journal of Physical Chemistry C, 111(33), 12265-12273. doi:10.1021/jp071884c

Griess, G. A., Rogers, E., & Serwer, P. (2001). Application of the concept of an electrophoretic ratchet. ELECTROPHORESIS, 22(6), 981-989. doi:10.1002/1522-2683()22:6<981::aid-elps981>3.0.co;2-x

Eijkel, J. C. T., & Berg, A. van den. (2005). Nanofluidics: what is it and what can we expect from it? Microfluidics and Nanofluidics, 1(3), 249-267. doi:10.1007/s10404-004-0012-9

Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056

Astumian, R. D., Weaver, J. C., & Adair, R. K. (1995). Rectification and signal averaging of weak electric fields by biological cells. Proceedings of the National Academy of Sciences, 92(9), 3740-3743. doi:10.1073/pnas.92.9.3740

Blackiston, D. J., McLaughlin, K. A., & Levin, M. (2009). Bioelectric controls of cell proliferation: Ion channels, membrane voltage and the cell cycle. Cell Cycle, 8(21), 3527-3536. doi:10.4161/cc.8.21.9888

Manzanares, J. A., Cervera, J., & Mafé, S. (2011). Processing weak electrical signals with threshold-potential nanostructures showing a high variability. Applied Physics Letters, 99(15), 153703. doi:10.1063/1.3650712

Levin, M., & Stevenson, C. G. (2012). Regulation of Cell Behavior and Tissue Patterning by Bioelectrical Signals: Challenges and Opportunities for Biomedical Engineering. Annual Review of Biomedical Engineering, 14(1), 295-323. doi:10.1146/annurev-bioeng-071811-150114

Alcaraz, A., Ramírez, P., García-Giménez, E., López, M. L., Andrio, A., & Aguilella, V. M. (2006). A pH-Tunable Nanofluidic Diode:  Electrochemical Rectification in a Reconstituted Single Ion Channel. The Journal of Physical Chemistry B, 110(42), 21205-21209. doi:10.1021/jp063204w

García-Giménez, E., Alcaraz, A., Aguilella, V. M., & Ramírez, P. (2009). Directional ion selectivity in a biological nanopore with bipolar structure. Journal of Membrane Science, 331(1-2), 137-142. doi:10.1016/j.memsci.2009.01.026

Miedema, H., Vrouenraets, M., Wierenga, J., Meijberg, W., Robillard, G., & Eisenberg, B. (2007). A Biological Porin Engineered into a Molecular, Nanofluidic Diode. Nano Letters, 7(9), 2886-2891. doi:10.1021/nl0716808

Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2(4), 209-215. doi:10.1038/nnano.2007.27

Maglia, G., Heron, A. J., Hwang, W. L., Holden, M. A., Mikhailova, E., Li, Q., … Bayley, H. (2009). Droplet networks with incorporated protein diodes show collective properties. Nature Nanotechnology, 4(7), 437-440. doi:10.1038/nnano.2009.121

Gabrielsson, E. O., Tybrandt, K., & Berggren, M. (2012). Ion diode logics for pH control. Lab on a Chip, 12(14), 2507. doi:10.1039/c2lc40093f

Macrae, M. X., Blake, S., Jiang, X., Capone, R., Estes, D. J., Mayer, M., & Yang, J. (2009). A Semi-Synthetic Ion Channel Platform for Detection of Phosphatase and Protease Activity. ACS Nano, 3(11), 3567-3580. doi:10.1021/nn901231h

Wilson, N. A., Abu-Shumays, R., Gyarfas, B., Wang, H., Lieberman, K. R., Akeson, M., & Dunbar, W. B. (2009). Electronic Control of DNA Polymerase Binding and Unbinding to Single DNA Molecules. ACS Nano, 3(4), 995-1003. doi:10.1021/nn9000897

Alcaraz, A., Nestorovich, E. M., Aguilella-Arzo, M., Aguilella, V. M., & Bezrukov, S. M. (2004). Salting Out the Ionic Selectivity of a Wide Channel: The Asymmetry of OmpF. Biophysical Journal, 87(2), 943-957. doi:10.1529/biophysj.104/043414

Cowan, S. W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R. A., … Rosenbusch, J. P. (1992). Crystal structures explain functional properties of two E. coli porins. Nature, 358(6389), 727-733. doi:10.1038/358727a0

Nestorovich, E. M., Rostovtseva, T. K., & Bezrukov, S. M. (2003). Residue Ionization and Ion Transport through OmpF Channels. Biophysical Journal, 85(6), 3718-3729. doi:10.1016/s0006-3495(03)74788-2

Alcaraz, A., Ramı́rez, P., Mafé, S., Holdik, H., & Bauer, B. (2000). Ion selectivity and water dissociation in polymer bipolar membranes studied by membrane potential and current–voltage measurements. Polymer, 41(17), 6627-6634. doi:10.1016/s0032-3861(99)00886-1

Aguilella-Arzo, M., García-Celma, J. J., Cervera, J., Alcaraz, A., & Aguilella, V. M. (2007). Electrostatic properties and macroscopic electrodiffusion in OmpF porin and mutants. Bioelectrochemistry, 70(2), 320-327. doi:10.1016/j.bioelechem.2006.04.005

Ramirez, P., Gomez, V., Ali, M., Ensinger, W., & Mafe, S. (2013). Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochemistry Communications, 31, 137-140. doi:10.1016/j.elecom.2013.03.026

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem