- -

Distance computation between non-holonomic motions with constant accelerations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Distance computation between non-holonomic motions with constant accelerations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bernabeu Soler, Enrique Jorge es_ES
dc.contributor.author Valera Fernández, Ángel es_ES
dc.contributor.author Gómez Moreno, Javier es_ES
dc.date.accessioned 2014-06-25T07:45:51Z
dc.date.available 2014-06-25T07:45:51Z
dc.date.issued 2013-09-18
dc.identifier.issn 1729-8806
dc.identifier.uri http://hdl.handle.net/10251/38356
dc.description.abstract A method for computing the distance between two moving robots or between a mobile robot and a dynamic obstacle with linear or arc-like motions and with constant accelerations is presented in this paper. This distance is obtained without stepping or discretizing the motions of the robots or obstacles. The robots and obstacles are modelled by convex hulls. This technique obtains the future instant in time when two moving objects will be at their minimum translational distance - i.e., at their minimum separation or maximum penetration (if they will collide). This distance and the future instant in time are computed in parallel. This method is intended to be run each time new information from the world is received and, consequently, it can be used for generating collision-free trajectories for non-holonomic mobile robots. es_ES
dc.description.sponsorship This work was partially funded by the Spanish government CICYT projects: DPI2010-20814-C02-02, and DPI2011-28507-C02-01. en_EN
dc.format.extent 15 es_ES
dc.language Inglés es_ES
dc.publisher InTech es_ES
dc.relation.ispartof International Journal of Advanced Robotic Systems es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Continuous distance computation es_ES
dc.subject Gilbert-Johnson-Keerthi (GJK) Algorithm es_ES
dc.subject Mobile robots es_ES
dc.subject Non-holonomic motions es_ES
dc.subject Continuous collision detection es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Distance computation between non-holonomic motions with constant accelerations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5772/56760
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20814-C02-02/ES/IDENTIFICACION DE PARAMETROS DINAMICOS EN VEHICULOS LIGEROS Y ROBOTS MOVILES. APLICACION AL CONTROL Y LA NAVEGACION AUTOMATICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2011-28507-C02-01/ES/DESARROLLO DE CONTROLADORES BASADOS EN MISIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial es_ES
dc.description.bibliographicCitation Bernabeu Soler, EJ.; Valera Fernández, Á.; Gómez Moreno, J. (2013). Distance computation between non-holonomic motions with constant accelerations. International Journal of Advanced Robotic Systems. 10:1-15. doi:10.5772/56760 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.intechopen.com/journals/international_journal_of_advanced_robotic_systems/distance-computation-between-non-holonomic-motions-with-constant-accelerations es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.relation.senia 251642
dc.description.references Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M. N., … Ferguson, D. (2008). Autonomous driving in urban environments: Boss and the Urban Challenge. Journal of Field Robotics, 25(8), 425-466. doi:10.1002/rob.20255 es_ES
dc.description.references Redon, S., Kheddar, A., & Coquillart, S. (2002). Fast Continuous Collision Detection between Rigid Bodies. Computer Graphics Forum, 21(3), 279-287. doi:10.1111/1467-8659.t01-1-00587 es_ES
dc.description.references Canny, J. (1986). Collision Detection for Moving Polyhedra. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(2), 200-209. doi:10.1109/tpami.1986.4767773 es_ES
dc.description.references Buss, S. R. (2005). Collision detection with relative screw motion. The Visual Computer, 21(1-2), 41-58. doi:10.1007/s00371-004-0269-8 es_ES
dc.description.references Fiorini, P., & Shiller, Z. (1998). Motion Planning in Dynamic Environments Using Velocity Obstacles. The International Journal of Robotics Research, 17(7), 760-772. doi:10.1177/027836499801700706 es_ES
dc.description.references Gilbert, E. G., Johnson, D. W., & Keerthi, S. S. (1988). A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE Journal on Robotics and Automation, 4(2), 193-203. doi:10.1109/56.2083 es_ES
dc.description.references Bernabeu, E. J., & Tornero, J. (2002). Hough transform for distance computation and collision avoidance. IEEE Transactions on Robotics and Automation, 18(3), 393-398. doi:10.1109/tra.2002.1019476 es_ES
dc.description.references Simon, D. (2006). Optimal State Estimation. doi:10.1002/0470045345 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem