Mostrar el registro sencillo del ítem
dc.contributor.author | Bernabeu Soler, Enrique Jorge | es_ES |
dc.contributor.author | Valera Fernández, Ángel | es_ES |
dc.contributor.author | Gómez Moreno, Javier | es_ES |
dc.date.accessioned | 2014-06-25T07:45:51Z | |
dc.date.available | 2014-06-25T07:45:51Z | |
dc.date.issued | 2013-09-18 | |
dc.identifier.issn | 1729-8806 | |
dc.identifier.uri | http://hdl.handle.net/10251/38356 | |
dc.description.abstract | A method for computing the distance between two moving robots or between a mobile robot and a dynamic obstacle with linear or arc-like motions and with constant accelerations is presented in this paper. This distance is obtained without stepping or discretizing the motions of the robots or obstacles. The robots and obstacles are modelled by convex hulls. This technique obtains the future instant in time when two moving objects will be at their minimum translational distance - i.e., at their minimum separation or maximum penetration (if they will collide). This distance and the future instant in time are computed in parallel. This method is intended to be run each time new information from the world is received and, consequently, it can be used for generating collision-free trajectories for non-holonomic mobile robots. | es_ES |
dc.description.sponsorship | This work was partially funded by the Spanish government CICYT projects: DPI2010-20814-C02-02, and DPI2011-28507-C02-01. | en_EN |
dc.format.extent | 15 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | InTech | es_ES |
dc.relation.ispartof | International Journal of Advanced Robotic Systems | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Continuous distance computation | es_ES |
dc.subject | Gilbert-Johnson-Keerthi (GJK) Algorithm | es_ES |
dc.subject | Mobile robots | es_ES |
dc.subject | Non-holonomic motions | es_ES |
dc.subject | Continuous collision detection | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Distance computation between non-holonomic motions with constant accelerations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.5772/56760 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2010-20814-C02-02/ES/IDENTIFICACION DE PARAMETROS DINAMICOS EN VEHICULOS LIGEROS Y ROBOTS MOVILES. APLICACION AL CONTROL Y LA NAVEGACION AUTOMATICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2011-28507-C02-01/ES/DESARROLLO DE CONTROLADORES BASADOS EN MISIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial | es_ES |
dc.description.bibliographicCitation | Bernabeu Soler, EJ.; Valera Fernández, Á.; Gómez Moreno, J. (2013). Distance computation between non-holonomic motions with constant accelerations. International Journal of Advanced Robotic Systems. 10:1-15. doi:10.5772/56760 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://www.intechopen.com/journals/international_journal_of_advanced_robotic_systems/distance-computation-between-non-holonomic-motions-with-constant-accelerations | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.relation.senia | 251642 | |
dc.description.references | Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M. N., … Ferguson, D. (2008). Autonomous driving in urban environments: Boss and the Urban Challenge. Journal of Field Robotics, 25(8), 425-466. doi:10.1002/rob.20255 | es_ES |
dc.description.references | Redon, S., Kheddar, A., & Coquillart, S. (2002). Fast Continuous Collision Detection between Rigid Bodies. Computer Graphics Forum, 21(3), 279-287. doi:10.1111/1467-8659.t01-1-00587 | es_ES |
dc.description.references | Canny, J. (1986). Collision Detection for Moving Polyhedra. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(2), 200-209. doi:10.1109/tpami.1986.4767773 | es_ES |
dc.description.references | Buss, S. R. (2005). Collision detection with relative screw motion. The Visual Computer, 21(1-2), 41-58. doi:10.1007/s00371-004-0269-8 | es_ES |
dc.description.references | Fiorini, P., & Shiller, Z. (1998). Motion Planning in Dynamic Environments Using Velocity Obstacles. The International Journal of Robotics Research, 17(7), 760-772. doi:10.1177/027836499801700706 | es_ES |
dc.description.references | Gilbert, E. G., Johnson, D. W., & Keerthi, S. S. (1988). A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE Journal on Robotics and Automation, 4(2), 193-203. doi:10.1109/56.2083 | es_ES |
dc.description.references | Bernabeu, E. J., & Tornero, J. (2002). Hough transform for distance computation and collision avoidance. IEEE Transactions on Robotics and Automation, 18(3), 393-398. doi:10.1109/tra.2002.1019476 | es_ES |
dc.description.references | Simon, D. (2006). Optimal State Estimation. doi:10.1002/0470045345 | es_ES |