- -

In-Line estimation of the standard colour index of citrus fruits using a computer vision system developed for a mobile platform

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In-Line estimation of the standard colour index of citrus fruits using a computer vision system developed for a mobile platform

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vidal, A. es_ES
dc.contributor.author Talens Oliag, Pau es_ES
dc.contributor.author Prats-Montalbán, José Manuel es_ES
dc.contributor.author Cubero García, Sergio es_ES
dc.contributor.author Albert Gil, Francisco Eugenio es_ES
dc.contributor.author Blasco Ivars, José es_ES
dc.date.accessioned 2014-06-27T09:15:00Z
dc.date.issued 2013-12
dc.identifier.issn 1935-5130
dc.identifier.uri http://hdl.handle.net/10251/38426
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s11947-012-1015-2 es_ES
dc.description.abstract A key aspect for the consumer when it comes to deciding on a particular product is the colour. In order to make fruit available to consumers as early as possible, the collection of oranges and mandarins begins before they ripen fully and reach their typical orange colour. As a result, they are therefore subjected to certain degreening treatments, depending on their standard colour citrus index at harvest. Recently, a mobile platform that incorporates a computer vision system capable of pre-sorting the fruit while it is being harvested has been developed as an aid in the harvesting task. However, due to the restrictions of working in the field, the computer vision system developed for this machine is limited in its technology and processing capacity compared to conventional systems. This work shows the optimised algorithms for estimating the colour of citrus in-line that were developed for this mobile platform and its performance is evaluated against that of a spectrophotometer used as a reference in the analysis of colour in food. The results obtained prove that our analysis system predicts the colour index of citrus with a good reliability (R2 = 0.925) working in real time. Findings also show that it is effective for classifying harvested fruits in the field according to their colour. © 2012 Springer Science+Business Media New York. es_ES
dc.description.sponsorship This work was partially funded by the INIA through research project RTA2009-00118-C02-01 with the support of European FEDER funds, and by the project PAID-05-11-2745, Vicerectorat d'Investigacio, Universitat Politecnica de Valencia. en_EN
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Automatic inspection es_ES
dc.subject Citrus fruits es_ES
dc.subject Colour analysis es_ES
dc.subject Degreening es_ES
dc.subject Machine vision es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title In-Line estimation of the standard colour index of citrus fruits using a computer vision system developed for a mobile platform es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-012-1015-2
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTA2009-00118-C02-01/ES/RTA2009-00118-C02-01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-11-2745/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària es_ES
dc.description.bibliographicCitation Vidal, A.; Talens Oliag, P.; Prats-Montalbán, JM.; Cubero García, S.; Albert Gil, FE.; Blasco Ivars, J. (2013). In-Line estimation of the standard colour index of citrus fruits using a computer vision system developed for a mobile platform. Food and Bioprocess Technology. 6(12):3412-3419. https://doi.org/10.1007/s11947-012-1015-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://link.springer.com/article/10.1007%2Fs11947-012-1015-2 es_ES
dc.description.upvformatpinicio 3412 es_ES
dc.description.upvformatpfin 3419 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 231518
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Arzate-Vázquez, I., Chanona-Pérez, J. J., Perea-Flores, M. J., Calderón-Domínguez, G., Moreno-Armendáriz, M. A., Calvo, H., Godoy-Calderón, S., Quevedo, R., & Gutiérrez-López, G. (2011). Image processing applied to classification of avocado variety Hass (Persea americana Mill.) during the ripening process. Food and Bioprocess Technology, 4(7), 1307–1313. es_ES
dc.description.references Blasco, J., Aleixos, N., Cubero, S., Gómez-Sanchis, J., & Moltó, E. (2009). Automatic sorting of satsuma (Citrus unshiu) segments using computer vision and morphological features. Computers and Electronics in Agriculture, 66, 1–8. es_ES
dc.description.references Campbell, B. L., Nelson, R. G., Ebel, C. E., Dozier, W. A., Adrian, J. L., & Hockema, B. R. (2004). Fruit quality characteristics that affect consumer preferences for satsuma mandarins. HortScience, 39(7), 1664–1669. es_ES
dc.description.references Cavazza, A., Corradini, C., Rinaldi, M., Salvadeo, P., Borromei, C., & Massini, R. (2012). Evaluation of pasta thermal treatment by determination of carbohydrates, furosine, and color indices. Food and Bioprocess Technology. doi: 10.1007/s11947-012-0906-6 . In-press. es_ES
dc.description.references Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4(4), 487–504. es_ES
dc.description.references Cubero, S., Moltó, E., Gutiérrez, A., Aleixos, N., García-Navarrete, O. L., Juste, F., & Blasco, J. (2010). Real-time inspection of fruit on a mobile harvesting platform in field conditions using computer vision. Progress in Agricultural Engineering Science, 6, 1–16. es_ES
dc.description.references Díaz, R., Faus, G., Blasco, M., Blasco, J., & Moltó, E. (2000). The application of a fast algorithm for the classification of olives by machine vision. Food Research International, 33, 305–309. es_ES
dc.description.references DOGV (2006) Diari Oficial de la Comunitat Valenciana, 5346, 30321-30328. es_ES
dc.description.references Gardner, J. L. (2007). Comparison of calibration methods for tristimulus colorimeters. Journal of Research of the National Institute of Standards and Technology, 112, 129–138. es_ES
dc.description.references Hashim, N., Janius, R. B., Baranyai, L., Rahman, R. A., Osman, A., & Zude, M. (2011). Kinetic model for colour changes in bananas during the appearance of chilling injury symptoms. Food and Bioprocess Technology, 5(8), 2952–2963. es_ES
dc.description.references HunterLab (2008): Applications note, 8(9), http://www.hunterlab.com/appnotes/an08_96a.pdf . Accessed September 2012. es_ES
dc.description.references Hutchings, J. B., Luo, R., & Ji, W. (2002). Calibrated colour imaging analysis of food. In D. MacDougall (Ed.), Colour in Food (pp. 352–366). Cambridge: Woodhead Publishing. es_ES
dc.description.references Jiménez-Cuesta MJ, Cuquerella J & Martínez-Jávega JM (1981) Determination of a color index for citrus fruit degreening. In Proc. of the International Society of Citriculture, Vol. 2, 750-753 es_ES
dc.description.references Kang, S. P., East, A. R., & Trujillo, F. J. (2008). Colour vision system evaluation of bicolour fruit: A case study with ‘B74’ mango. Postharvest Biology and Technology, 49, 77–85. es_ES
dc.description.references Lang, C., & Hübert, T. (2011). A colour ripeness indicator for apples. Food and Bioprocess Technology, 5(8), 3244–3249. es_ES
dc.description.references López-Camelo, A. F., & Gómez, P. A. (2004). Comparison of color indexes for tomato ripening. Horticultura Brasileira, 22(3), 534–537. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-05362004000300006 . es_ES
dc.description.references López-García, F., Andreu-García, A., Blasco, J., Aleixos, N., & Valiente, J. M. (2010). Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach. Computers and Electronics in Agriculture, 71, 189–197. es_ES
dc.description.references Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2012). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food and Bioprocess Technology, 5(4), 1121–1142. es_ES
dc.description.references Mendoza, F., Dejmek, P., & Aguilera, J. M. (2006). Calibrated color measurements of agricultural foods using image analysis. Postharvest Biology and Technology, 41, 285–295. es_ES
dc.description.references Montgomery, D. C. (2005). Design and analysis of experiments, 6th ed. Tempe: Wiley. es_ES
dc.description.references Noboru, O., & Robertson, A. R. (2005). Colorimetry. West Sussex: Wiley. es_ES
dc.description.references Pathare, P. B., Opara, U. L., & Al-Said, F. A. (2012). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology. doi: 10.1007/s11947-012-0867-9 . In-press. es_ES
dc.description.references Quevedo, R. A., Aguilera, J. M., & Pedreschi, F. (2010). Colour of salmon fillets by computer vision and sensory panel. Food and Bioprocess Technology, 3, 637–643. es_ES
dc.description.references Sahin, S., & Sumnu, S. G. (2006). Physical properties of foods. New York: Springer. es_ES
dc.description.references Quevedo, R., Valencia, E., Alvarado, F., Ronceros, B., & Bastias, J. M. (2011). Comparison of whiteness index vs. fractal Fourier in the determination of bloom chocolate using image analysis. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0729-x . In-press. es_ES
dc.description.references Smith, T., & Guild, J. (1931). The C.I.E. colorimetric standards and their use. Transactions of the Optical Society, 33(3), 73–134. es_ES
dc.description.references Yam, K. L., & Papadakis, S. E. (2004). A simple digital imaging method for measuring and analyzing color of food surfaces. Journal of Food Engineering, 61, 137–142. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem