Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold-Katalyse. Angewandte Chemie, 118(47), 8064-8105. doi:10.1002/ange.200602454
Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454
Hashmi, A. S. K. (2007). Gold-Catalyzed Organic Reactions. Chemical Reviews, 107(7), 3180-3211. doi:10.1021/cr000436x
[+]
Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold-Katalyse. Angewandte Chemie, 118(47), 8064-8105. doi:10.1002/ange.200602454
Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454
Hashmi, A. S. K. (2007). Gold-Catalyzed Organic Reactions. Chemical Reviews, 107(7), 3180-3211. doi:10.1021/cr000436x
Gorin, D. J., & Toste, F. D. (2007). Relativistic effects in homogeneous gold catalysis. Nature, 446(7134), 395-403. doi:10.1038/nature05592
Gorin, D. J., Sherry, B. D., & Toste, F. D. (2008). Ligand Effects in Homogeneous Au Catalysis. Chemical Reviews, 108(8), 3351-3378. doi:10.1021/cr068430g
Nolan, S. P. (2010). The Development and Catalytic Uses of N-Heterocyclic Carbene Gold Complexes. Accounts of Chemical Research, 44(2), 91-100. doi:10.1021/ar1000764
Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u
Leyva-Pérez, A., & Corma, A. (2011). Ähnlichkeiten und Unterschiede innerhalb der «relativistischen» Triade Gold, Platin und Quecksilber in der Katalyse. Angewandte Chemie, 124(3), 636-658. doi:10.1002/ange.201101726
Leyva-Pérez, A., & Corma, A. (2011). Similarities and Differences between the «Relativistic» Triad Gold, Platinum, and Mercury in Catalysis. Angewandte Chemie International Edition, 51(3), 614-635. doi:10.1002/anie.201101726
Seidel, G., Lehmann, C. W., & Fürstner, A. (2010). Elementary Steps in Gold Catalysis: The Significance of gem-Diauration. Angewandte Chemie, 122(45), 8644-8648. doi:10.1002/ange.201003349
Seidel, G., Lehmann, C. W., & Fürstner, A. (2010). Elementary Steps in Gold Catalysis: The Significance of gem-Diauration. Angewandte Chemie International Edition, 49(45), 8466-8470. doi:10.1002/anie.201003349
Hashmi, A. S. K. (2010). Homogene Gold-Katalyse jenseits von Vermutungen und Annahmen - charakterisierte Intermediate. Angewandte Chemie, 122(31), 5360-5369. doi:10.1002/ange.200907078
Hashmi, A. S. K. (2010). Homogeneous Gold Catalysis Beyond Assumptions and Proposals-Characterized Intermediates. Angewandte Chemie International Edition, 49(31), 5232-5241. doi:10.1002/anie.200907078
Gómez-Suárez, A., & Nolan, S. P. (2012). Katalyse mit zweikernigen Goldkomplexen: Sind zwei Goldzentren besser als eines? Angewandte Chemie, 124(33), 8278-8281. doi:10.1002/ange.201203587
Gómez-Suárez, A., & Nolan, S. P. (2012). Dinuclear Gold Catalysis: Are Two Gold Centers Better than One? Angewandte Chemie International Edition, 51(33), 8156-8159. doi:10.1002/anie.201203587
Hashmi, A. S. K., Braun, I., Rudolph, M., & Rominger, F. (2012). The Role of Gold Acetylides as a Selectivity Trigger and the Importance of gem-Diaurated Species in the Gold-Catalyzed Hydroarylating-Aromatization of Arene-Diynes. Organometallics, 31(2), 644-661. doi:10.1021/om200946m
Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Eine einfache Gold-katalysierte Synthese von Benzofulvenen -gem-diaurierte Spezies als «Instant-Dual-Activation»-Präkatalysatoren. Angewandte Chemie, 124(18), 4532-4536. doi:10.1002/ange.201109183
Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Simple Gold-Catalyzed Synthesis of Benzofulvenes-gem-Diaurated Species as «Instant Dual-Activation» Precatalysts. Angewandte Chemie International Edition, 51(18), 4456-4460. doi:10.1002/anie.201109183
Grirrane, A., Corma, A., & Garcia, H. (2008). Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics. Science, 322(5908), 1661-1664. doi:10.1126/science.1166401
Corma, A. (2006). Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts. Science, 313(5785), 332-334. doi:10.1126/science.1128383
Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813
Blanco Jaimes, M. C., Böhling, C. R. N., Serrano-Becerra, J. M., & Hashmi, A. S. K. (2013). Hochaktive einkernige NAC-Gold(I)-Katalysatoren. Angewandte Chemie, 125(31), 8121-8124. doi:10.1002/ange.201210351
Blanco Jaimes, M. C., Böhling, C. R. N., Serrano-Becerra, J. M., & Hashmi, A. S. K. (2013). Highly Active Mononuclear NAC-Gold(I) Catalysts. Angewandte Chemie International Edition, 52(31), 7963-7966. doi:10.1002/anie.201210351
Hashmi, A. S. K., Frost, T. M., & Bats, J. W. (2000). Highly Selective Gold-Catalyzed Arene Synthesis. Journal of the American Chemical Society, 122(46), 11553-11554. doi:10.1021/ja005570d
Hashmi, A. S. K., Frost, T. M., & Bats, J. W. (2001). Gold Catalysis: On the Phenol Synthesis. Organic Letters, 3(23), 3769-3771. doi:10.1021/ol016734d
Leyva-Pérez, A., Rubio-Marqués, P., Al-Deyab, S. S., Al-Resayes, S. I., & Corma, A. (2011). Cationic Gold Catalyzes ω-Bromination of Terminal Alkynes and Subsequent Hydroaddition Reactions. ACS Catalysis, 1(6), 601-606. doi:10.1021/cs200168p
Kennedy-Smith, J. J., Staben, S. T., & Toste, F. D. (2004). Gold(I)-Catalyzed Conia-Ene Reaction of β-Ketoesters with Alkynes. Journal of the American Chemical Society, 126(14), 4526-4527. doi:10.1021/ja049487s
Marion, N., Ramón, R. S., & Nolan, S. P. (2009). [(NHC)AuI]-Catalyzed Acid-Free Alkyne Hydration at Part-per-Million Catalyst Loadings. Journal of the American Chemical Society, 131(2), 448-449. doi:10.1021/ja809403e
Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P., & Hutchings, G. J. (2008). Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science, 321(5894), 1331-1335. doi:10.1126/science.1159639
CHRETIEN, S., BURATTO, S., & METIU, H. (2007). Catalysis by very small Au clusters. Current Opinion in Solid State and Materials Science, 11(5-6), 62-75. doi:10.1016/j.cossms.2008.07.003
Tsunoyama, H., & Tsukuda, T. (2009). Magic Numbers of Gold Clusters Stabilized by PVP. Journal of the American Chemical Society, 131(51), 18216-18217. doi:10.1021/ja908188f
Alves, L., Ballesteros, B., Boronat, M., Cabrero-Antonino, J. R., Concepción, P., Corma, A., … Mendoza, E. (2011). Synthesis and Stabilization of Subnanometric Gold Oxide Nanoparticles on Multiwalled Carbon Nanotubes and Their Catalytic Activity. Journal of the American Chemical Society, 133(26), 10251-10261. doi:10.1021/ja202862k
Lu, J., Aydin, C., Browning, N. D., & Gates, B. C. (2012). Imaging Isolated Gold Atom Catalytic Sites in Zeolite NaY. Angewandte Chemie, 124(24), 5944-5948. doi:10.1002/ange.201107391
Lu, J., Aydin, C., Browning, N. D., & Gates, B. C. (2012). Imaging Isolated Gold Atom Catalytic Sites in Zeolite NaY. Angewandte Chemie International Edition, 51(24), 5842-5846. doi:10.1002/anie.201107391
Bi, Q.-Y., Du, X.-L., Liu, Y.-M., Cao, Y., He, H.-Y., & Fan, K.-N. (2012). Efficient Subnanometric Gold-Catalyzed Hydrogen Generation via Formic Acid Decomposition under Ambient Conditions. Journal of the American Chemical Society, 134(21), 8926-8933. doi:10.1021/ja301696e
Shichibu, Y., & Konishi, K. (2010). HCl-Induced Nuclearity Convergence in Diphosphine-Protected Ultrasmall Gold Clusters: A Novel Synthetic Route to «Magic-Number» Au13 Clusters. Small, 6(11), 1216-1220. doi:10.1002/smll.200902398
Carrettin, S., Blanco, M. C., Corma, A., & Hashmi, A. S. K. (2006). Heterogeneous Gold-Catalysed Synthesis of Phenols. Advanced Synthesis & Catalysis, 348(10-11), 1283-1288. doi:10.1002/adsc.200606099
Hashmi, A. S. K., Hengst, T., Lothschütz, C., & Rominger, F. (2010). New and Easily Accessible Nitrogen Acyclic Gold(I) Carbenes: Structure and Application in the Gold-Catalyzed Phenol Synthesis as well as the Hydration of Alkynes. Advanced Synthesis & Catalysis, 352(8), 1315-1337. doi:10.1002/adsc.201000126
Hashmi, A. S. K., Ghanbari, M., Rudolph, M., & Rominger, F. (2012). Combining Gold and Palladium Catalysis: One-Pot Access to Pentasubstituted Arenes from Furan-Yne and En-Diyne Substrates. Chemistry - A European Journal, 18(26), 8113-8119. doi:10.1002/chem.201200091
Hashmi, A. S. K., Loos, A., Doherty, S., Knight, J. G., Robson, K. J., & Rominger, F. (2011). Gold-Catalyzed Cyclizations: A Comparative Study of ortho,ortho′-Substituted KITPHOS Monophosphines with their Biaryl Monophosphine Counterpart SPHOS. Advanced Synthesis & Catalysis, 353(5), 749-759. doi:10.1002/adsc.201000879
Stratakis, M., & Garcia, H. (2012). Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. Chemical Reviews, 112(8), 4469-4506. doi:10.1021/cr3000785
Jeyabharathi, C., Senthil Kumar, S., Kiruthika, G. V. M., & Phani, K. L. N. (2010). Aqueous CTAB-Assisted Electrodeposition of Gold Atomic Clusters and Their Oxygen Reduction Electrocatalytic Activity in Acid Solutions. Angewandte Chemie, 122(16), 2987-2990. doi:10.1002/ange.200905614
Jeyabharathi, C., Senthil Kumar, S., Kiruthika, G. V. M., & Phani, K. L. N. (2010). Aqueous CTAB-Assisted Electrodeposition of Gold Atomic Clusters and Their Oxygen Reduction Electrocatalytic Activity in Acid Solutions. Angewandte Chemie International Edition, 49(16), 2925-2928. doi:10.1002/anie.200905614
Walter, M., Akola, J., Lopez-Acevedo, O., Jadzinsky, P. D., Calero, G., Ackerson, C. J., … Hakkinen, H. (2008). A unified view of ligand-protected gold clusters as superatom complexes. Proceedings of the National Academy of Sciences, 105(27), 9157-9162. doi:10.1073/pnas.0801001105
Sakurai, H., Kamiya, I., & Kitahara, H. (2010). Formal Lewis acidic character of gold nanocluster catalyst. Pure and Applied Chemistry, 82(11), 2005-2016. doi:10.1351/pac-con-09-12-06
Boronat, M., & Corma, A. (2011). Molecular approaches to catalysis. Journal of Catalysis, 284(2), 138-147. doi:10.1016/j.jcat.2011.09.010
Rodríguez-Vázquez, M. J., Vázquez-Vázquez, C., Rivas, J., & López-Quintela, M. A. (2009). Synthesis and characterization of gold atomic clusters by the two-phase method. The European Physical Journal D, 52(1-3), 23-26. doi:10.1140/epjd/e2009-00061-5
Wang, D., Cai, R., Sharma, S., Jirak, J., Thummanapelli, S. K., Akhmedov, N. G., … Shi, X. (2012). «Silver Effect» in Gold(I) Catalysis: An Overlooked Important Factor. Journal of the American Chemical Society, 134(21), 9012-9019. doi:10.1021/ja303862z
Gómez-Suárez, A., Oonishi, Y., Meiries, S., & Nolan, S. P. (2013). [{Au(NHC)}2(μ-OH)][BF4]: Silver-Free and Acid-Free Catalysts for Water-Inclusive Gold-Mediated Organic Transformations. Organometallics, 32(4), 1106-1111. doi:10.1021/om301249r
Weber, S. G., Rominger, F., & Straub, B. F. (2012). Isolated Silver Intermediate of Gold Precatalyst Activation. European Journal of Inorganic Chemistry, 2012(17), 2863-2867. doi:10.1002/ejic.201200327
Hashmi, A. S. K. (2012). Sub-Nanosized Gold Catalysts. Science, 338(6113), 1434-1434. doi:10.1126/science.1231901
Albrecht, M. (2009). Carbenes in Action. Science, 326(5952), 532-533. doi:10.1126/science.1181553
Lalrempuia, R., McDaniel, N. D., Müller-Bunz, H., Bernhard, S., & Albrecht, M. (2010). Katalytische Oxidation von Wasser durch einen Iridiumkomplex mit einem starken Carben-Donorliganden. Angewandte Chemie, 122(50), 9959-9962. doi:10.1002/ange.201005260
Lalrempuia, R., McDaniel, N. D., Müller-Bunz, H., Bernhard, S., & Albrecht, M. (2010). Water Oxidation Catalyzed by Strong Carbene-Type Donor-Ligand Complexes of Iridium. Angewandte Chemie International Edition, 49(50), 9765-9768. doi:10.1002/anie.201005260
Lavallo, V., & Grubbs, R. H. (2009). Carbenes As Catalysts for Transformations of Organometallic Iron Complexes. Science, 326(5952), 559-562. doi:10.1126/science.1178919
[-]