- -

Very Small (3-6 Atoms) Gold Cluster Catalyzed Carbón-Carbon and Carbon-Heteroatom Bond-Forming Reactions in Solution

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Very Small (3-6 Atoms) Gold Cluster Catalyzed Carbón-Carbon and Carbon-Heteroatom Bond-Forming Reactions in Solution

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Oliver Meseguer, Judit es_ES
dc.contributor.author Leyva Perez, Antonio es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2014-07-03T08:31:48Z
dc.date.issued 2013-12-01
dc.identifier.issn 1867-3880
dc.identifier.uri http://hdl.handle.net/10251/38546
dc.description.abstract Small gold clusters containing 3-6 atoms (submolar) catalyze different carbon-carbon and carbon-heteroatom bond-forming reactions. They can be formed in situ from gold salts, complexes and nanoparticles under acidic conditions. A sound determination of possible clusters in solution for previously reported reactions can only be assessed after accurate kinetic studies, in situ and ex situ spectroscopic measurements, and comparison with preformed gold clusters, as the stability of gold salts and complexes can vary depending on the type of catalyst and the experimental conditions. The results here reported could be expanded not only to other gold-catalyzed reactions but also to other catalytic metal systems. es_ES
dc.description.sponsorship Financial support by the Severo Ochoa program and Consolider-Ingenio 2010 (proyecto MULTICAT) from Ministerio de Ciencia e Innovacion (MCIINN) is acknowledged. J. O.-M. thanks Instituto de Tecnologia Quimica (ITQ) for a postgraduate scholarship. A. L.-P. thanks Consejo Superior de Investigaciones Cientificas (CSIC) for a contract. en_EN
dc.format.extent 7 es_ES
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof ChemCatChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Molecular clusters es_ES
dc.subject Gold es_ES
dc.subject Carbon-heteroatom bond formation es_ES
dc.subject Carbon-carbon bond formation es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Very Small (3-6 Atoms) Gold Cluster Catalyzed Carbón-Carbon and Carbon-Heteroatom Bond-Forming Reactions in Solution es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cctc.201300695
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Oliver Meseguer, J.; Leyva Perez, A.; Corma Canós, A. (2013). Very Small (3-6 Atoms) Gold Cluster Catalyzed Carbón-Carbon and Carbon-Heteroatom Bond-Forming Reactions in Solution. ChemCatChem. 5(12):3509-3515. doi:10.1002/cctc.201300695 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/10.1002/cctc.201300695 es_ES
dc.description.upvformatpinicio 3509 es_ES
dc.description.upvformatpfin 3515 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 258651
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Instituto de Tecnología Química UPV-CSIC es_ES
dc.description.references Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold-Katalyse. Angewandte Chemie, 118(47), 8064-8105. doi:10.1002/ange.200602454 es_ES
dc.description.references Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454 es_ES
dc.description.references Hashmi, A. S. K. (2007). Gold-Catalyzed Organic Reactions. Chemical Reviews, 107(7), 3180-3211. doi:10.1021/cr000436x es_ES
dc.description.references Gorin, D. J., & Toste, F. D. (2007). Relativistic effects in homogeneous gold catalysis. Nature, 446(7134), 395-403. doi:10.1038/nature05592 es_ES
dc.description.references Gorin, D. J., Sherry, B. D., & Toste, F. D. (2008). Ligand Effects in Homogeneous Au Catalysis. Chemical Reviews, 108(8), 3351-3378. doi:10.1021/cr068430g es_ES
dc.description.references Nolan, S. P. (2010). The Development and Catalytic Uses of N-Heterocyclic Carbene Gold Complexes. Accounts of Chemical Research, 44(2), 91-100. doi:10.1021/ar1000764 es_ES
dc.description.references Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u es_ES
dc.description.references Leyva-Pérez, A., & Corma, A. (2011). Ähnlichkeiten und Unterschiede innerhalb der «relativistischen» Triade Gold, Platin und Quecksilber in der Katalyse. Angewandte Chemie, 124(3), 636-658. doi:10.1002/ange.201101726 es_ES
dc.description.references Leyva-Pérez, A., & Corma, A. (2011). Similarities and Differences between the «Relativistic» Triad Gold, Platinum, and Mercury in Catalysis. Angewandte Chemie International Edition, 51(3), 614-635. doi:10.1002/anie.201101726 es_ES
dc.description.references Seidel, G., Lehmann, C. W., & Fürstner, A. (2010). Elementary Steps in Gold Catalysis: The Significance of gem-Diauration. Angewandte Chemie, 122(45), 8644-8648. doi:10.1002/ange.201003349 es_ES
dc.description.references Seidel, G., Lehmann, C. W., & Fürstner, A. (2010). Elementary Steps in Gold Catalysis: The Significance of gem-Diauration. Angewandte Chemie International Edition, 49(45), 8466-8470. doi:10.1002/anie.201003349 es_ES
dc.description.references Hashmi, A. S. K. (2010). Homogene Gold-Katalyse jenseits von Vermutungen und Annahmen - charakterisierte Intermediate. Angewandte Chemie, 122(31), 5360-5369. doi:10.1002/ange.200907078 es_ES
dc.description.references Hashmi, A. S. K. (2010). Homogeneous Gold Catalysis Beyond Assumptions and Proposals-Characterized Intermediates. Angewandte Chemie International Edition, 49(31), 5232-5241. doi:10.1002/anie.200907078 es_ES
dc.description.references Gómez-Suárez, A., & Nolan, S. P. (2012). Katalyse mit zweikernigen Goldkomplexen: Sind zwei Goldzentren besser als eines? Angewandte Chemie, 124(33), 8278-8281. doi:10.1002/ange.201203587 es_ES
dc.description.references Gómez-Suárez, A., & Nolan, S. P. (2012). Dinuclear Gold Catalysis: Are Two Gold Centers Better than One? Angewandte Chemie International Edition, 51(33), 8156-8159. doi:10.1002/anie.201203587 es_ES
dc.description.references Hashmi, A. S. K., Braun, I., Rudolph, M., & Rominger, F. (2012). The Role of Gold Acetylides as a Selectivity Trigger and the Importance of gem-Diaurated Species in the Gold-Catalyzed Hydroarylating-Aromatization of Arene-Diynes. Organometallics, 31(2), 644-661. doi:10.1021/om200946m es_ES
dc.description.references Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Eine einfache Gold-katalysierte Synthese von Benzofulvenen -gem-diaurierte Spezies als «Instant-Dual-Activation»-Präkatalysatoren. Angewandte Chemie, 124(18), 4532-4536. doi:10.1002/ange.201109183 es_ES
dc.description.references Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Simple Gold-Catalyzed Synthesis of Benzofulvenes-gem-Diaurated Species as «Instant Dual-Activation» Precatalysts. Angewandte Chemie International Edition, 51(18), 4456-4460. doi:10.1002/anie.201109183 es_ES
dc.description.references Grirrane, A., Corma, A., & Garcia, H. (2008). Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics. Science, 322(5908), 1661-1664. doi:10.1126/science.1166401 es_ES
dc.description.references Corma, A. (2006). Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts. Science, 313(5785), 332-334. doi:10.1126/science.1128383 es_ES
dc.description.references Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813 es_ES
dc.description.references Blanco Jaimes, M. C., Böhling, C. R. N., Serrano-Becerra, J. M., & Hashmi, A. S. K. (2013). Hochaktive einkernige NAC-Gold(I)-Katalysatoren. Angewandte Chemie, 125(31), 8121-8124. doi:10.1002/ange.201210351 es_ES
dc.description.references Blanco Jaimes, M. C., Böhling, C. R. N., Serrano-Becerra, J. M., & Hashmi, A. S. K. (2013). Highly Active Mononuclear NAC-Gold(I) Catalysts. Angewandte Chemie International Edition, 52(31), 7963-7966. doi:10.1002/anie.201210351 es_ES
dc.description.references Hashmi, A. S. K., Frost, T. M., & Bats, J. W. (2000). Highly Selective Gold-Catalyzed Arene Synthesis. Journal of the American Chemical Society, 122(46), 11553-11554. doi:10.1021/ja005570d es_ES
dc.description.references Hashmi, A. S. K., Frost, T. M., & Bats, J. W. (2001). Gold Catalysis:  On the Phenol Synthesis. Organic Letters, 3(23), 3769-3771. doi:10.1021/ol016734d es_ES
dc.description.references Leyva-Pérez, A., Rubio-Marqués, P., Al-Deyab, S. S., Al-Resayes, S. I., & Corma, A. (2011). Cationic Gold Catalyzes ω-Bromination of Terminal Alkynes and Subsequent Hydroaddition Reactions. ACS Catalysis, 1(6), 601-606. doi:10.1021/cs200168p es_ES
dc.description.references Kennedy-Smith, J. J., Staben, S. T., & Toste, F. D. (2004). Gold(I)-Catalyzed Conia-Ene Reaction of β-Ketoesters with Alkynes. Journal of the American Chemical Society, 126(14), 4526-4527. doi:10.1021/ja049487s es_ES
dc.description.references Marion, N., Ramón, R. S., & Nolan, S. P. (2009). [(NHC)AuI]-Catalyzed Acid-Free Alkyne Hydration at Part-per-Million Catalyst Loadings. Journal of the American Chemical Society, 131(2), 448-449. doi:10.1021/ja809403e es_ES
dc.description.references Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P., & Hutchings, G. J. (2008). Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science, 321(5894), 1331-1335. doi:10.1126/science.1159639 es_ES
dc.description.references CHRETIEN, S., BURATTO, S., & METIU, H. (2007). Catalysis by very small Au clusters. Current Opinion in Solid State and Materials Science, 11(5-6), 62-75. doi:10.1016/j.cossms.2008.07.003 es_ES
dc.description.references Tsunoyama, H., & Tsukuda, T. (2009). Magic Numbers of Gold Clusters Stabilized by PVP. Journal of the American Chemical Society, 131(51), 18216-18217. doi:10.1021/ja908188f es_ES
dc.description.references Alves, L., Ballesteros, B., Boronat, M., Cabrero-Antonino, J. R., Concepción, P., Corma, A., … Mendoza, E. (2011). Synthesis and Stabilization of Subnanometric Gold Oxide Nanoparticles on Multiwalled Carbon Nanotubes and Their Catalytic Activity. Journal of the American Chemical Society, 133(26), 10251-10261. doi:10.1021/ja202862k es_ES
dc.description.references Lu, J., Aydin, C., Browning, N. D., & Gates, B. C. (2012). Imaging Isolated Gold Atom Catalytic Sites in Zeolite NaY. Angewandte Chemie, 124(24), 5944-5948. doi:10.1002/ange.201107391 es_ES
dc.description.references Lu, J., Aydin, C., Browning, N. D., & Gates, B. C. (2012). Imaging Isolated Gold Atom Catalytic Sites in Zeolite NaY. Angewandte Chemie International Edition, 51(24), 5842-5846. doi:10.1002/anie.201107391 es_ES
dc.description.references Bi, Q.-Y., Du, X.-L., Liu, Y.-M., Cao, Y., He, H.-Y., & Fan, K.-N. (2012). Efficient Subnanometric Gold-Catalyzed Hydrogen Generation via Formic Acid Decomposition under Ambient Conditions. Journal of the American Chemical Society, 134(21), 8926-8933. doi:10.1021/ja301696e es_ES
dc.description.references Shichibu, Y., & Konishi, K. (2010). HCl-Induced Nuclearity Convergence in Diphosphine-Protected Ultrasmall Gold Clusters: A Novel Synthetic Route to «Magic-Number» Au13 Clusters. Small, 6(11), 1216-1220. doi:10.1002/smll.200902398 es_ES
dc.description.references Carrettin, S., Blanco, M. C., Corma, A., & Hashmi, A. S. K. (2006). Heterogeneous Gold-Catalysed Synthesis of Phenols. Advanced Synthesis & Catalysis, 348(10-11), 1283-1288. doi:10.1002/adsc.200606099 es_ES
dc.description.references Hashmi, A. S. K., Hengst, T., Lothschütz, C., & Rominger, F. (2010). New and Easily Accessible Nitrogen Acyclic Gold(I) Carbenes: Structure and Application in the Gold-Catalyzed Phenol Synthesis as well as the Hydration of Alkynes. Advanced Synthesis & Catalysis, 352(8), 1315-1337. doi:10.1002/adsc.201000126 es_ES
dc.description.references Hashmi, A. S. K., Ghanbari, M., Rudolph, M., & Rominger, F. (2012). Combining Gold and Palladium Catalysis: One-Pot Access to Pentasubstituted Arenes from Furan-Yne and En-Diyne Substrates. Chemistry - A European Journal, 18(26), 8113-8119. doi:10.1002/chem.201200091 es_ES
dc.description.references Hashmi, A. S. K., Loos, A., Doherty, S., Knight, J. G., Robson, K. J., & Rominger, F. (2011). Gold-Catalyzed Cyclizations: A Comparative Study of ortho,ortho′-Substituted KITPHOS Monophosphines with their Biaryl Monophosphine Counterpart SPHOS. Advanced Synthesis & Catalysis, 353(5), 749-759. doi:10.1002/adsc.201000879 es_ES
dc.description.references Stratakis, M., & Garcia, H. (2012). Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. Chemical Reviews, 112(8), 4469-4506. doi:10.1021/cr3000785 es_ES
dc.description.references Jeyabharathi, C., Senthil Kumar, S., Kiruthika, G. V. M., & Phani, K. L. N. (2010). Aqueous CTAB-Assisted Electrodeposition of Gold Atomic Clusters and Their Oxygen Reduction Electrocatalytic Activity in Acid Solutions. Angewandte Chemie, 122(16), 2987-2990. doi:10.1002/ange.200905614 es_ES
dc.description.references Jeyabharathi, C., Senthil Kumar, S., Kiruthika, G. V. M., & Phani, K. L. N. (2010). Aqueous CTAB-Assisted Electrodeposition of Gold Atomic Clusters and Their Oxygen Reduction Electrocatalytic Activity in Acid Solutions. Angewandte Chemie International Edition, 49(16), 2925-2928. doi:10.1002/anie.200905614 es_ES
dc.description.references Walter, M., Akola, J., Lopez-Acevedo, O., Jadzinsky, P. D., Calero, G., Ackerson, C. J., … Hakkinen, H. (2008). A unified view of ligand-protected gold clusters as superatom complexes. Proceedings of the National Academy of Sciences, 105(27), 9157-9162. doi:10.1073/pnas.0801001105 es_ES
dc.description.references Sakurai, H., Kamiya, I., & Kitahara, H. (2010). Formal Lewis acidic character of gold nanocluster catalyst. Pure and Applied Chemistry, 82(11), 2005-2016. doi:10.1351/pac-con-09-12-06 es_ES
dc.description.references Boronat, M., & Corma, A. (2011). Molecular approaches to catalysis. Journal of Catalysis, 284(2), 138-147. doi:10.1016/j.jcat.2011.09.010 es_ES
dc.description.references Rodríguez-Vázquez, M. J., Vázquez-Vázquez, C., Rivas, J., & López-Quintela, M. A. (2009). Synthesis and characterization of gold atomic clusters by the two-phase method. The European Physical Journal D, 52(1-3), 23-26. doi:10.1140/epjd/e2009-00061-5 es_ES
dc.description.references Wang, D., Cai, R., Sharma, S., Jirak, J., Thummanapelli, S. K., Akhmedov, N. G., … Shi, X. (2012). «Silver Effect» in Gold(I) Catalysis: An Overlooked Important Factor. Journal of the American Chemical Society, 134(21), 9012-9019. doi:10.1021/ja303862z es_ES
dc.description.references Gómez-Suárez, A., Oonishi, Y., Meiries, S., & Nolan, S. P. (2013). [{Au(NHC)}2(μ-OH)][BF4]: Silver-Free and Acid-Free Catalysts for Water-Inclusive Gold-Mediated Organic Transformations. Organometallics, 32(4), 1106-1111. doi:10.1021/om301249r es_ES
dc.description.references Weber, S. G., Rominger, F., & Straub, B. F. (2012). Isolated Silver Intermediate of Gold Precatalyst Activation. European Journal of Inorganic Chemistry, 2012(17), 2863-2867. doi:10.1002/ejic.201200327 es_ES
dc.description.references Hashmi, A. S. K. (2012). Sub-Nanosized Gold Catalysts. Science, 338(6113), 1434-1434. doi:10.1126/science.1231901 es_ES
dc.description.references Albrecht, M. (2009). Carbenes in Action. Science, 326(5952), 532-533. doi:10.1126/science.1181553 es_ES
dc.description.references Lalrempuia, R., McDaniel, N. D., Müller-Bunz, H., Bernhard, S., & Albrecht, M. (2010). Katalytische Oxidation von Wasser durch einen Iridiumkomplex mit einem starken Carben-Donorliganden. Angewandte Chemie, 122(50), 9959-9962. doi:10.1002/ange.201005260 es_ES
dc.description.references Lalrempuia, R., McDaniel, N. D., Müller-Bunz, H., Bernhard, S., & Albrecht, M. (2010). Water Oxidation Catalyzed by Strong Carbene-Type Donor-Ligand Complexes of Iridium. Angewandte Chemie International Edition, 49(50), 9765-9768. doi:10.1002/anie.201005260 es_ES
dc.description.references Lavallo, V., & Grubbs, R. H. (2009). Carbenes As Catalysts for Transformations of Organometallic Iron Complexes. Science, 326(5952), 559-562. doi:10.1126/science.1178919 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem