Mostrar el registro sencillo del ítem
dc.contributor.author | Ivorra Martínez, Eugenio | es_ES |
dc.contributor.author | Girón Hernández, Lunier Joel | es_ES |
dc.contributor.author | Sánchez Salmerón, Antonio José | es_ES |
dc.contributor.author | Verdú Amat, Samuel | es_ES |
dc.contributor.author | Barat Baviera, José Manuel | es_ES |
dc.contributor.author | Grau Meló, Raúl | es_ES |
dc.date.accessioned | 2014-07-22T09:17:12Z | |
dc.date.issued | 2013-08 | |
dc.identifier.issn | 0260-8774 | |
dc.identifier.uri | http://hdl.handle.net/10251/38949 | |
dc.description.abstract | Consumers want fresh food with a long shelf-life, which in 2010, resulted in an important increase in packaged and processed food. This is especially important for fishery products due to their highly perishable nature. One problem is that it is not possible to measure freshness in packaged food only using the visible spectrum. Moreover, the detection of freshness is a complex problem as fish has different tissues with different biodegradation processes. Therefore, it would be especially interesting to have a non-destructive method to evaluate the shelf-life of packed processed fish. This paper proposes a method for detecting expired packaged salmon. Firstly, this method uses hyperspectral imaging spectroscopy (HIS) using visible and SW-NIR wavelengths. Secondly, a classification of different salmon tissues is carried out by image segmentation. Finally, classifications of expired or non expired salmon are performed with the PLS-DA statistical multivariate method due to the large amount of captured data. In a similar way, spectral data and the physicochemical, biochemical and microbiological properties of salmon are correlated using partial least squares (PLSs). The result obtained has a classification success rate of 82.7% in cross-validation from real commercial samples of salmon. Therefore, this is a promising technique for the non-destructive detection of expired packaged smoked salmon. | es_ES |
dc.description.sponsorship | We would like to thank the Valencian Government (GVA) and the Polytechnic University of Valencia for the financial support. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Food Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hyperspectral imaging | es_ES |
dc.subject | Colour model segmentation | es_ES |
dc.subject | SW-NIR | es_ES |
dc.subject | Fish shelf-life | es_ES |
dc.subject | PLS-DA | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Detection of expired vacuum-packed smoked salmon based on PLS-DA method using hyperspectral images | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jfoodeng.2013.02.022 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Ivorra Martínez, E.; Girón Hernández, LJ.; Sánchez Salmerón, AJ.; Verdú Amat, S.; Barat Baviera, JM.; Grau Meló, R. (2013). Detection of expired vacuum-packed smoked salmon based on PLS-DA method using hyperspectral images. Journal of Food Engineering. 117(3):342-349. doi:10.1016/j.jfoodeng.2013.02.022 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.jfoodeng.2013.02.022 | es_ES |
dc.description.upvformatpinicio | 342 | es_ES |
dc.description.upvformatpfin | 349 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 117 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 239020 | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |