- -

Detection of expired vacuum-packed smoked salmon based on PLS-DA method using hyperspectral images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Detection of expired vacuum-packed smoked salmon based on PLS-DA method using hyperspectral images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ivorra Martínez, Eugenio es_ES
dc.contributor.author Girón Hernández, Lunier Joel es_ES
dc.contributor.author Sánchez Salmerón, Antonio José es_ES
dc.contributor.author Verdú Amat, Samuel es_ES
dc.contributor.author Barat Baviera, José Manuel es_ES
dc.contributor.author Grau Meló, Raúl es_ES
dc.date.accessioned 2014-07-22T09:17:12Z
dc.date.issued 2013-08
dc.identifier.issn 0260-8774
dc.identifier.uri http://hdl.handle.net/10251/38949
dc.description.abstract Consumers want fresh food with a long shelf-life, which in 2010, resulted in an important increase in packaged and processed food. This is especially important for fishery products due to their highly perishable nature. One problem is that it is not possible to measure freshness in packaged food only using the visible spectrum. Moreover, the detection of freshness is a complex problem as fish has different tissues with different biodegradation processes. Therefore, it would be especially interesting to have a non-destructive method to evaluate the shelf-life of packed processed fish. This paper proposes a method for detecting expired packaged salmon. Firstly, this method uses hyperspectral imaging spectroscopy (HIS) using visible and SW-NIR wavelengths. Secondly, a classification of different salmon tissues is carried out by image segmentation. Finally, classifications of expired or non expired salmon are performed with the PLS-DA statistical multivariate method due to the large amount of captured data. In a similar way, spectral data and the physicochemical, biochemical and microbiological properties of salmon are correlated using partial least squares (PLSs). The result obtained has a classification success rate of 82.7% in cross-validation from real commercial samples of salmon. Therefore, this is a promising technique for the non-destructive detection of expired packaged smoked salmon. es_ES
dc.description.sponsorship We would like to thank the Valencian Government (GVA) and the Polytechnic University of Valencia for the financial support. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Food Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hyperspectral imaging es_ES
dc.subject Colour model segmentation es_ES
dc.subject SW-NIR es_ES
dc.subject Fish shelf-life es_ES
dc.subject PLS-DA es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Detection of expired vacuum-packed smoked salmon based on PLS-DA method using hyperspectral images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jfoodeng.2013.02.022
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Ivorra Martínez, E.; Girón Hernández, LJ.; Sánchez Salmerón, AJ.; Verdú Amat, S.; Barat Baviera, JM.; Grau Meló, R. (2013). Detection of expired vacuum-packed smoked salmon based on PLS-DA method using hyperspectral images. Journal of Food Engineering. 117(3):342-349. doi:10.1016/j.jfoodeng.2013.02.022 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.jfoodeng.2013.02.022 es_ES
dc.description.upvformatpinicio 342 es_ES
dc.description.upvformatpfin 349 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 117 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 239020
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem