- -

ROC curves in cost space

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

ROC curves in cost space

Show full item record

Hernández Orallo, J.; Flach ., P.; Ferri Ramírez, C. (2013). ROC curves in cost space. Machine Learning. 93(1):71-91. https://doi.org/10.1007/s10994-013-5328-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/38999

Files in this item

Item Metadata

Title: ROC curves in cost space
Author: Hernández Orallo, José Flach ., Peter Ferri Ramírez, César
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
ROC curves and cost curves are two popular ways of visualising classifier performance, finding appropriate thresholds according to the operating condition, and deriving useful aggregated measures such as the area under the ...[+]
Subjects: Cost curves , ROC curves , Cost-sensitive evaluation , Ranking performance , Operating condition , Kendall tau distance , Area Under the ROC Curve (AUC)
Copyrigths: Reserva de todos los derechos
Source:
Machine Learning. (issn: 0885-6125 )
DOI: 10.1007/s10994-013-5328-9
Publisher:
Springer Verlag (Germany)
Publisher version: http://link.springer.com/article/10.1007/s10994-013-5328-9#
Project ID:
info:eu-repo/grantAgreement/MEC//CSD2007-00022/ES/Agreement Technologies/
info:eu-repo/grantAgreement/COST//IC0801/EU/Agreement Technologies/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F051/ES/Advances on Agreement Technologies for Computational Entities (atforce)/
info:eu-repo/grantAgreement/CHIST-ERA//CHIST-ERA-2011/EU/Rethinking the Essence, Flexibility and Reusability of Advanced Model Exploitation/REFRAME/
Description: The final publication is available at Springer via http://dx.doi.org/10.1007/s10994-013-5328-9
Thanks:
We would like to thank the anonymous referees for their helpful comments. This work was supported by the MEC/MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, GVA project PROMETEO/2008/051, the ...[+]
Type: Artículo

References

Adams, N., & Hand, D. (1999). Comparing classifiers when the misallocation costs are uncertain. Pattern Recognition, 32(7), 1139–1147.

Chang, J., & Yap, C. (1986). A polynomial solution for the potato-peeling problem. Discrete & Computational Geometry, 1(1), 155–182.

Drummond, C., & Holte, R. (2000). Explicitly representing expected cost: an alternative to ROC representation. In Knowl. discovery & data mining (pp. 198–207). [+]
Adams, N., & Hand, D. (1999). Comparing classifiers when the misallocation costs are uncertain. Pattern Recognition, 32(7), 1139–1147.

Chang, J., & Yap, C. (1986). A polynomial solution for the potato-peeling problem. Discrete & Computational Geometry, 1(1), 155–182.

Drummond, C., & Holte, R. (2000). Explicitly representing expected cost: an alternative to ROC representation. In Knowl. discovery & data mining (pp. 198–207).

Drummond, C., & Holte, R. (2006). Cost curves: an improved method for visualizing classifier performance. Machine Learning, 65, 95–130.

Elkan, C. (2001). The foundations of cost-sensitive learning. In B. Nebel (Ed.), Proc. of the 17th intl. conf. on artificial intelligence (IJCAI-01) (pp. 973–978).

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.

Fawcett, T., & Niculescu-Mizil, A. (2007). PAV and the ROC convex hull. Machine Learning, 68(1), 97–106.

Flach, P. (2003). The geometry of ROC space: understanding machine learning metrics through ROC isometrics. In Machine learning, proceedings of the twentieth international conference (ICML 2003) (pp. 194–201).

Flach, P., Hernández-Orallo, J., & Ferri, C. (2011). A coherent interpretation of AUC as a measure of aggregated classification performance. In Proc. of the 28th intl. conference on machine learning, ICML2011.

Frank, A., & Asuncion, A. (2010). UCI machine learning repository. http://archive.ics.uci.edu/ml .

Hand, D. (2009). Measuring classifier performance: a coherent alternative to the area under the ROC curve. Machine Learning, 77(1), 103–123.

Hernández-Orallo, J., Flach, P., & Ferri, C. (2011). Brier curves: a new cost-based visualisation of classifier performance. In Proceedings of the 28th international conference on machine learning, ICML2011.

Hernández-Orallo, J., Flach, P., & Ferri, C. (2012). A unified view of performance metrics: translating threshold choice into expected classification loss. Journal of Machine Learning Research, 13, 2813–2869.

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81–93. doi: 10.2307/2332226 .

Swets, J., Dawes, R., & Monahan, J. (2000). Better decisions through science. Scientific American, 283(4), 82–87.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record