- -

ROC curves in cost space

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ROC curves in cost space

Mostrar el registro completo del ítem

Hernández Orallo, J.; Flach ., P.; Ferri Ramírez, C. (2013). ROC curves in cost space. Machine Learning. 93(1):71-91. https://doi.org/10.1007/s10994-013-5328-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/38999

Ficheros en el ítem

Metadatos del ítem

Título: ROC curves in cost space
Autor: Hernández Orallo, José Flach ., Peter Ferri Ramírez, César
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
ROC curves and cost curves are two popular ways of visualising classifier performance, finding appropriate thresholds according to the operating condition, and deriving useful aggregated measures such as the area under the ...[+]
Palabras clave: Cost curves , ROC curves , Cost-sensitive evaluation , Ranking performance , Operating condition , Kendall tau distance , Area Under the ROC Curve (AUC)
Derechos de uso: Reserva de todos los derechos
Fuente:
Machine Learning. (issn: 0885-6125 )
DOI: 10.1007/s10994-013-5328-9
Editorial:
Springer Verlag (Germany)
Versión del editor: http://link.springer.com/article/10.1007/s10994-013-5328-9#
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//CSD2007-00022/ES/Agreement Technologies/
info:eu-repo/grantAgreement/CHIST-ERA//CHIST-ERA-2011/EU/Rethinking the Essence, Flexibility and Reusability of Advanced Model Exploitation/REFRAME/
info:eu-repo/grantAgreement/COST//IC0801/EU/Agreement Technologies/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F051/ES/Advances on Agreement Technologies for Computational Entities (atforce)/
Descripción: The final publication is available at Springer via http://dx.doi.org/10.1007/s10994-013-5328-9
Agradecimientos:
We would like to thank the anonymous referees for their helpful comments. This work was supported by the MEC/MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, GVA project PROMETEO/2008/051, the ...[+]
Tipo: Artículo

References

Adams, N., & Hand, D. (1999). Comparing classifiers when the misallocation costs are uncertain. Pattern Recognition, 32(7), 1139–1147.

Chang, J., & Yap, C. (1986). A polynomial solution for the potato-peeling problem. Discrete & Computational Geometry, 1(1), 155–182.

Drummond, C., & Holte, R. (2000). Explicitly representing expected cost: an alternative to ROC representation. In Knowl. discovery & data mining (pp. 198–207). [+]
Adams, N., & Hand, D. (1999). Comparing classifiers when the misallocation costs are uncertain. Pattern Recognition, 32(7), 1139–1147.

Chang, J., & Yap, C. (1986). A polynomial solution for the potato-peeling problem. Discrete & Computational Geometry, 1(1), 155–182.

Drummond, C., & Holte, R. (2000). Explicitly representing expected cost: an alternative to ROC representation. In Knowl. discovery & data mining (pp. 198–207).

Drummond, C., & Holte, R. (2006). Cost curves: an improved method for visualizing classifier performance. Machine Learning, 65, 95–130.

Elkan, C. (2001). The foundations of cost-sensitive learning. In B. Nebel (Ed.), Proc. of the 17th intl. conf. on artificial intelligence (IJCAI-01) (pp. 973–978).

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.

Fawcett, T., & Niculescu-Mizil, A. (2007). PAV and the ROC convex hull. Machine Learning, 68(1), 97–106.

Flach, P. (2003). The geometry of ROC space: understanding machine learning metrics through ROC isometrics. In Machine learning, proceedings of the twentieth international conference (ICML 2003) (pp. 194–201).

Flach, P., Hernández-Orallo, J., & Ferri, C. (2011). A coherent interpretation of AUC as a measure of aggregated classification performance. In Proc. of the 28th intl. conference on machine learning, ICML2011.

Frank, A., & Asuncion, A. (2010). UCI machine learning repository. http://archive.ics.uci.edu/ml .

Hand, D. (2009). Measuring classifier performance: a coherent alternative to the area under the ROC curve. Machine Learning, 77(1), 103–123.

Hernández-Orallo, J., Flach, P., & Ferri, C. (2011). Brier curves: a new cost-based visualisation of classifier performance. In Proceedings of the 28th international conference on machine learning, ICML2011.

Hernández-Orallo, J., Flach, P., & Ferri, C. (2012). A unified view of performance metrics: translating threshold choice into expected classification loss. Journal of Machine Learning Research, 13, 2813–2869.

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81–93. doi: 10.2307/2332226 .

Swets, J., Dawes, R., & Monahan, J. (2000). Better decisions through science. Scientific American, 283(4), 82–87.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem