- -

ROC curves in cost space

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ROC curves in cost space

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández Orallo, José es_ES
dc.contributor.author Flach ., Peter es_ES
dc.contributor.author Ferri Ramírez, César es_ES
dc.date.accessioned 2014-07-24T15:14:24Z
dc.date.issued 2013-10
dc.identifier.issn 0885-6125
dc.identifier.uri http://hdl.handle.net/10251/38999
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s10994-013-5328-9 es_ES
dc.description.abstract ROC curves and cost curves are two popular ways of visualising classifier performance, finding appropriate thresholds according to the operating condition, and deriving useful aggregated measures such as the area under the ROC curve (AUC) or the area under the optimal cost curve. In this paper we present new findings and connections between ROC space and cost space. In particular, we show that ROC curves can be transferred to cost space by means of a very natural threshold choice method, which sets the decision threshold such that the proportion of positive predictions equals the operating condition. We call these new curves rate-driven curves, and we demonstrate that the expected loss as measured by the area under these curves is linearly related to AUC. We show that the rate-driven curves are the genuine equivalent of ROC curves in cost space, establishing a point-point rather than a point-line correspondence. Furthermore, a decomposition of the rate-driven curves is introduced which separates the loss due to the threshold choice method from the ranking loss (Kendall τ distance). We also derive the corresponding curve to the ROC convex hull in cost space; this curve is different from the lower envelope of the cost lines, as the latter assumes only optimal thresholds are chosen. es_ES
dc.description.sponsorship We would like to thank the anonymous referees for their helpful comments. This work was supported by the MEC/MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, GVA project PROMETEO/2008/051, the COST-European Cooperation in the field of Scientific and Technical Research IC0801 AT, and the REFRAME project granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA), and funded by the Engineering and Physical Sciences Research Council in the UK and the Ministerio de Economia y Competitividad in Spain. en_EN
dc.language Inglés
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Machine Learning es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cost curves es_ES
dc.subject ROC curves es_ES
dc.subject Cost-sensitive evaluation es_ES
dc.subject Ranking performance es_ES
dc.subject Operating condition es_ES
dc.subject Kendall tau distance es_ES
dc.subject Area Under the ROC Curve (AUC) es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title ROC curves in cost space es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/s10994-013-5328-9
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00022/ES/Agreement Technologies/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CHIST-ERA//CHIST-ERA-2011/EU/Rethinking the Essence, Flexibility and Reusability of Advanced Model Exploitation/REFRAME/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//IC0801/EU/Agreement Technologies/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F051/ES/Advances on Agreement Technologies for Computational Entities (atforce)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Hernández Orallo, J.; Flach ., P.; Ferri Ramírez, C. (2013). ROC curves in cost space. Machine Learning. 93(1):71-91. https://doi.org/10.1007/s10994-013-5328-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://link.springer.com/article/10.1007/s10994-013-5328-9# es_ES
dc.description.upvformatpinicio 71 es_ES
dc.description.upvformatpfin 91 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 93 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 262698
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Adams, N., & Hand, D. (1999). Comparing classifiers when the misallocation costs are uncertain. Pattern Recognition, 32(7), 1139–1147. es_ES
dc.description.references Chang, J., & Yap, C. (1986). A polynomial solution for the potato-peeling problem. Discrete & Computational Geometry, 1(1), 155–182. es_ES
dc.description.references Drummond, C., & Holte, R. (2000). Explicitly representing expected cost: an alternative to ROC representation. In Knowl. discovery & data mining (pp. 198–207). es_ES
dc.description.references Drummond, C., & Holte, R. (2006). Cost curves: an improved method for visualizing classifier performance. Machine Learning, 65, 95–130. es_ES
dc.description.references Elkan, C. (2001). The foundations of cost-sensitive learning. In B. Nebel (Ed.), Proc. of the 17th intl. conf. on artificial intelligence (IJCAI-01) (pp. 973–978). es_ES
dc.description.references Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. es_ES
dc.description.references Fawcett, T., & Niculescu-Mizil, A. (2007). PAV and the ROC convex hull. Machine Learning, 68(1), 97–106. es_ES
dc.description.references Flach, P. (2003). The geometry of ROC space: understanding machine learning metrics through ROC isometrics. In Machine learning, proceedings of the twentieth international conference (ICML 2003) (pp. 194–201). es_ES
dc.description.references Flach, P., Hernández-Orallo, J., & Ferri, C. (2011). A coherent interpretation of AUC as a measure of aggregated classification performance. In Proc. of the 28th intl. conference on machine learning, ICML2011. es_ES
dc.description.references Frank, A., & Asuncion, A. (2010). UCI machine learning repository. http://archive.ics.uci.edu/ml . es_ES
dc.description.references Hand, D. (2009). Measuring classifier performance: a coherent alternative to the area under the ROC curve. Machine Learning, 77(1), 103–123. es_ES
dc.description.references Hernández-Orallo, J., Flach, P., & Ferri, C. (2011). Brier curves: a new cost-based visualisation of classifier performance. In Proceedings of the 28th international conference on machine learning, ICML2011. es_ES
dc.description.references Hernández-Orallo, J., Flach, P., & Ferri, C. (2012). A unified view of performance metrics: translating threshold choice into expected classification loss. Journal of Machine Learning Research, 13, 2813–2869. es_ES
dc.description.references Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81–93. doi: 10.2307/2332226 . es_ES
dc.description.references Swets, J., Dawes, R., & Monahan, J. (2000). Better decisions through science. Scientific American, 283(4), 82–87. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem