Mostrar el registro sencillo del ítem
dc.contributor.author | Romero Pérez, Lucia | es_ES |
dc.contributor.author | Trénor Gomis, Beatriz Ana | es_ES |
dc.contributor.author | Ferrero De Loma-Osorio, José María | es_ES |
dc.contributor.author | Starmer, C. Frank | es_ES |
dc.date.accessioned | 2014-08-29T10:43:04Z | |
dc.date.available | 2014-08-29T10:43:04Z | |
dc.date.issued | 2013-11 | |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | http://hdl.handle.net/10251/39288 | |
dc.description.abstract | The distribution of cellular source-sink relationships plays an important role in cardiac propagation. It can lead to conduction slowing and block as well as wave fractionation. It is of great interest to unravel the mechanisms underlying evolution in wavefront geometry. Our goal is to investigate the role of the source-sink relationship on wavefront geometry using computer simulations. We analyzed the role of variability in the microscopic source-sink relationship in driving changes in wavefront geometry. The electrophysiological activity of a homogeneous isotropic tissue was simulated using the ten Tusscher and Panfilov 2006 action potential model and the source-sink relationship was characterized using an improved version of the Romero et al. safety factor formulation (SFm2). Our simulations reveal that non-uniform dispersion of the cellular source-sink relationship (dispersion along the wavefront) leads to alterations in curvature. To better understand the role of the source-sink relationship in the process of wave formation, the electrophysiological activity at the initiation of excitation waves in a 1D strand was examined and the source-sink relationship was characterized using the two recently updated safety factor formulations: the SFm2 and the Boyle-Vigmond (SFVB) definitions. The electrophysiological activity at the initiation of excitation waves was intimately related to the SFm2 profiles, while the SFVB led to several counterintuitive observations. Importantly, with the SFm2 characterization, a critical source-sink relationship for initiation of excitation waves was identified, which was independent of the size of the electrode of excitation, membrane excitability, or tissue conductivity. In conclusion, our work suggests that non-uniform dispersion of the source-sink relationship alters wavefront curvature and a critical source-sink relationship profile separates wave expansion from collapse. Our study reinforces the idea that the safety factor represents a powerful tool to study the mechanisms of cardiac propagation in silico, providing a better understanding of cardiac arrhythmias and their therapy. | es_ES |
dc.description.sponsorship | This work was partially supported by the "VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica'' from the Ministerio de Economia y Competitividad of Spain (TIN2012?37546?C03?01) and the European Commission (European Regional Development Funds - ERDF ? FEDER), Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica, Plan Avanza en el marco de la Accion Estrategica de Telecomunicaciones y Sociedad de la Informacion del Ministerio de Industria Turismo y Comercio of Spain (TSI?020100?2010?469), Programa de Apoyo a la Investigacion y Desarrollo (PAID?06?11?2002) de la Universidad Politecnica de Valencia, Direccion General de Politica Cientifica de la Generalitat Valenciana (GV/2013/119) and Programa Prometeo (PROMETEO/2012/030) de la Conselleria d'Educacio Formacio I Ocupacio, Generalitat Valenciana. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS ONE | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Action-potential propagation | es_ES |
dc.subject | Cardiac tissue | es_ES |
dc.subject | Safety factor | es_ES |
dc.subject | Vulnerable period | es_ES |
dc.subject | Slow conduction | es_ES |
dc.subject | Muscle | es_ES |
dc.subject | Excitability | es_ES |
dc.subject | Model | es_ES |
dc.subject | Arrhythmias | es_ES |
dc.subject | Fibrillation | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Non-Uniform Dispersion of the Source-Sink Relationship Alters Wavefront Curvature | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0078328 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2012-37546-C03-01/ES/CORAZON HUMANO COMPLETO FISIOLOGICO VIRTUAL: MEJORAS EN EL TRATAMIENTO DE ARRITMIAS CARDIACAS ORIENTADO A PACIENTE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MITURCO//TSI-020100-2010-0469/ES/LocMoTIC. Localización del Origen de Arritmias Cardíacas Mediante Modelado y Tecnologías de la Información y Comunicaciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-11-2002/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2013%2F119/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F030/ES/MEJORA EN LA PREVENCION Y TRATAMIENTO DE PATOLOGIAS CARDIACAS A TRAVES DE LA MODELIZACION MULTI-ESCALA Y LA SIMULACION COMPUTACIONAL (DIGITAL HEART)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà | es_ES |
dc.description.bibliographicCitation | Romero Pérez, L.; Trénor Gomis, BA.; Ferrero De Loma-Osorio, JM.; Starmer, CF. (2013). Non-Uniform Dispersion of the Source-Sink Relationship Alters Wavefront Curvature. PLoS ONE. 1-12. https://doi.org/10.1371/journal.pone.0078328 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1371/journal.pone.0078328 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 254374 | |
dc.identifier.pmid | 24223791 | en_EN |
dc.identifier.pmcid | PMC3817246 | en_EN |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Industria, Turismo y Comercio | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Cabo, C., Pertsov, A. M., Baxter, W. T., Davidenko, J. M., Gray, R. A., & Jalife, J. (1994). Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle. Circulation Research, 75(6), 1014-1028. doi:10.1161/01.res.75.6.1014 | es_ES |
dc.description.references | Fast, V. G., & Kléber, A. G. (1997). Role of wavefront curvature in propagation of cardiac impulse. Cardiovascular Research, 33(2), 258-271. doi:10.1016/s0008-6363(96)00216-7 | es_ES |
dc.description.references | KLÉBER, A. G., & RUDY, Y. (2004). Basic Mechanisms of Cardiac Impulse Propagation and Associated Arrhythmias. Physiological Reviews, 84(2), 431-488. doi:10.1152/physrev.00025.2003 | es_ES |
dc.description.references | Wellner, M., & Pertsov, A. M. (1997). Generalized eikonal equation in excitable media. Physical Review E, 55(6), 7656-7661. doi:10.1103/physreve.55.7656 | es_ES |
dc.description.references | Vaquero, M., Calvo, D., & Jalife, J. (2008). Cardiac fibrillation: From ion channels to rotors in the human heart. Heart Rhythm, 5(6), 872-879. doi:10.1016/j.hrthm.2008.02.034 | es_ES |
dc.description.references | Delgado, C., Steinhaus, B., Delmar, M., Chialvo, D. R., & Jalife, J. (1990). Directional differences in excitability and margin of safety for propagation in sheep ventricular epicardial muscle. Circulation Research, 67(1), 97-110. doi:10.1161/01.res.67.1.97 | es_ES |
dc.description.references | Shaw, R. M., & Rudy, Y. (1997). Ionic Mechanisms of Propagation in Cardiac Tissue. Circulation Research, 81(5), 727-741. doi:10.1161/01.res.81.5.727 | es_ES |
dc.description.references | Wang, Y., & Rudy, Y. (2000). Action potential propagation in inhomogeneous cardiac tissue: safety factor considerations and ionic mechanism. American Journal of Physiology-Heart and Circulatory Physiology, 278(4), H1019-H1029. doi:10.1152/ajpheart.2000.278.4.h1019 | es_ES |
dc.description.references | Romero, L., Trénor, B., Alonso, J. M., Tobón, C., Saiz, J., & Ferrero, J. M. (2009). The Relative Role of Refractoriness and Source–Sink Relationship in Reentry Generation during Simulated Acute Ischemia. Annals of Biomedical Engineering, 37(8), 1560-1571. doi:10.1007/s10439-009-9721-2 | es_ES |
dc.description.references | Boyle, P. M., & Vigmond, E. J. (2010). An Intuitive Safety Factor for Cardiac Propagation. Biophysical Journal, 98(12), L57-L59. doi:10.1016/j.bpj.2010.03.018 | es_ES |
dc.description.references | Kucera, J. P., & Rudy, Y. (2001). Mechanistic Insights Into Very Slow Conduction in Branching Cardiac Tissue. Circulation Research, 89(9), 799-806. doi:10.1161/hh2101.098442 | es_ES |
dc.description.references | Azene, E. M., Trayanova, N. A., & Warman, E. (2001). Wave Front–Obstacle Interactions in Cardiac Tissue: A Computational Study. Annals of Biomedical Engineering, 29(1), 35-46. doi:10.1114/1.1332083 | es_ES |
dc.description.references | Aslanidi, O. V., Stewart, P., Boyett, M. R., & Zhang, H. (2009). Optimal Velocity and Safety of Discontinuous Conduction through the Heterogeneous Purkinje-Ventricular Junction. Biophysical Journal, 97(1), 20-39. doi:10.1016/j.bpj.2009.03.061 | es_ES |
dc.description.references | Hubbard, M. L., & Henriquez, C. S. (2010). Increased interstitial loading reduces the effect of microstructural variations in cardiac tissue. American Journal of Physiology-Heart and Circulatory Physiology, 298(4), H1209-H1218. doi:10.1152/ajpheart.00689.2009 | es_ES |
dc.description.references | Ten Tusscher, K. H. W. J., & Panfilov, A. V. (2006). Alternans and spiral breakup in a human ventricular tissue model. American Journal of Physiology-Heart and Circulatory Physiology, 291(3), H1088-H1100. doi:10.1152/ajpheart.00109.2006 | es_ES |
dc.description.references | Van Capelle, F. J., & Durrer, D. (1980). Computer simulation of arrhythmias in a network of coupled excitable elements. Circulation Research, 47(3), 454-466. doi:10.1161/01.res.47.3.454 | es_ES |
dc.description.references | STARMER, C. F. (1997). The Cardiac Vulnerable Period and Reentrant Arrhythmias: Targets of Anti- and Proarrhythmic Processes. Pacing and Clinical Electrophysiology, 20(2), 445-454. doi:10.1111/j.1540-8159.1997.tb06203.x | es_ES |
dc.description.references | Starmer, C. (2003). What happens when cardiac Na channels lose their function? 1 – Numerical studies of the vulnerable period in tissue expressing mutant channels. Cardiovascular Research, 57(1), 82-91. doi:10.1016/s0008-6363(02)00613-2 | es_ES |
dc.description.references | Allessie, M. A., Bonke, F. I., & Schopman, F. J. (1976). Circus movement in rabbit atrial muscle as a mechanism of tachycardia. II. The role of nonuniform recovery of excitability in the occurrence of unidirectional block, as studied with multiple microelectrodes. Circulation Research, 39(2), 168-177. doi:10.1161/01.res.39.2.168 | es_ES |
dc.description.references | HAN, J., & MOE, G. K. (1964). Nonuniform Recovery of Excitability in Ventricular Muscle. Circulation Research, 14(1), 44-60. doi:10.1161/01.res.14.1.44 | es_ES |
dc.description.references | Clayton, R. H., & Holden, A. V. (2005). BioMedical Engineering OnLine, 4(1), 11. doi:10.1186/1475-925x-4-11 | es_ES |
dc.description.references | ZHAO, J., TREW, M. L., LEGRICE, I. J., SMAILL, B. H., & PULLAN, A. J. (2009). A Tissue-Specific Model of Reentry in the Right Atrial Appendage. Journal of Cardiovascular Electrophysiology, 20(6), 675-684. doi:10.1111/j.1540-8167.2008.01420.x | es_ES |
dc.description.references | Ong, J. J., Cha, Y. M., Kriett, J. M., Boyce, K., Feld, G. K., & Chen, P. S. (1995). The relation between atrial fibrillation wavefront characteristics and accessory pathway conduction. Journal of Clinical Investigation, 96(5), 2284-2296. doi:10.1172/jci118284 | es_ES |
dc.description.references | DANSE, P. W., GARRATT, C. J., MAST, F., & ALLESSIE, M. A. (2000). Preferential Depression of Conduction Around a Pivot Point in Rabbit Ventricular Myocardium by Potassium and Flecainide. Journal of Cardiovascular Electrophysiology, 11(3), 262-273. doi:10.1111/j.1540-8167.2000.tb01795.x | es_ES |
dc.description.references | Stein, M., van Veen, T. A. B., Hauer, R. N. W., de Bakker, J. M. T., & van Rijen, H. V. M. (2011). A 50% Reduction of Excitability but Not of Intercellular Coupling Affects Conduction Velocity Restitution and Activation Delay in the Mouse Heart. PLoS ONE, 6(6), e20310. doi:10.1371/journal.pone.0020310 | es_ES |
dc.description.references | Leon, L. J., & Roberge, F. A. (1991). Directional characteristics of action potential propagation in cardiac muscle. A model study. Circulation Research, 69(2), 378-395. doi:10.1161/01.res.69.2.378 | es_ES |
dc.description.references | Faber, G. M., & Rudy, Y. (2000). Action Potential and Contractility Changes in [Na+]i Overloaded Cardiac Myocytes: A Simulation Study. Biophysical Journal, 78(5), 2392-2404. doi:10.1016/s0006-3495(00)76783-x | es_ES |
dc.description.references | Spach, M. S., Miller, W. T., Geselowitz, D. B., Barr, R. C., Kootsey, J. M., & Johnson, E. A. (1981). The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents. Circulation Research, 48(1), 39-54. doi:10.1161/01.res.48.1.39 | es_ES |
dc.description.references | EFIMOV, I. R., CHENG, Y. N., BIERMANN, M., WAGONER, D. R., MAZGALEV, T. N., & TCHOU, P. J. (1997). Transmembrane Voltage Changes Produced by Real and Virtual Electrodes During Monophasic Defibrillation Shock Delivered by an Implantable Electrode. Journal of Cardiovascular Electrophysiology, 8(9), 1031-1045. doi:10.1111/j.1540-8167.1997.tb00627.x | es_ES |
dc.description.references | Sambelashvili, A. T., Nikolski, V. P., & Efimov, I. R. (2003). Nonlinear effects in subthreshold virtual electrode polarization. American Journal of Physiology-Heart and Circulatory Physiology, 284(6), H2368-H2374. doi:10.1152/ajpheart.00988.2002 | es_ES |