- -

Non-Uniform Dispersion of the Source-Sink Relationship Alters Wavefront Curvature

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-Uniform Dispersion of the Source-Sink Relationship Alters Wavefront Curvature

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero Pérez, Lucia es_ES
dc.contributor.author Trénor Gomis, Beatriz Ana es_ES
dc.contributor.author Ferrero De Loma-Osorio, José María es_ES
dc.contributor.author Starmer, C. Frank es_ES
dc.date.accessioned 2014-08-29T10:43:04Z
dc.date.available 2014-08-29T10:43:04Z
dc.date.issued 2013-11
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/10251/39288
dc.description.abstract The distribution of cellular source-sink relationships plays an important role in cardiac propagation. It can lead to conduction slowing and block as well as wave fractionation. It is of great interest to unravel the mechanisms underlying evolution in wavefront geometry. Our goal is to investigate the role of the source-sink relationship on wavefront geometry using computer simulations. We analyzed the role of variability in the microscopic source-sink relationship in driving changes in wavefront geometry. The electrophysiological activity of a homogeneous isotropic tissue was simulated using the ten Tusscher and Panfilov 2006 action potential model and the source-sink relationship was characterized using an improved version of the Romero et al. safety factor formulation (SFm2). Our simulations reveal that non-uniform dispersion of the cellular source-sink relationship (dispersion along the wavefront) leads to alterations in curvature. To better understand the role of the source-sink relationship in the process of wave formation, the electrophysiological activity at the initiation of excitation waves in a 1D strand was examined and the source-sink relationship was characterized using the two recently updated safety factor formulations: the SFm2 and the Boyle-Vigmond (SFVB) definitions. The electrophysiological activity at the initiation of excitation waves was intimately related to the SFm2 profiles, while the SFVB led to several counterintuitive observations. Importantly, with the SFm2 characterization, a critical source-sink relationship for initiation of excitation waves was identified, which was independent of the size of the electrode of excitation, membrane excitability, or tissue conductivity. In conclusion, our work suggests that non-uniform dispersion of the source-sink relationship alters wavefront curvature and a critical source-sink relationship profile separates wave expansion from collapse. Our study reinforces the idea that the safety factor represents a powerful tool to study the mechanisms of cardiac propagation in silico, providing a better understanding of cardiac arrhythmias and their therapy. es_ES
dc.description.sponsorship This work was partially supported by the "VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica'' from the Ministerio de Economia y Competitividad of Spain (TIN2012?37546?C03?01) and the European Commission (European Regional Development Funds - ERDF ? FEDER), Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica, Plan Avanza en el marco de la Accion Estrategica de Telecomunicaciones y Sociedad de la Informacion del Ministerio de Industria Turismo y Comercio of Spain (TSI?020100?2010?469), Programa de Apoyo a la Investigacion y Desarrollo (PAID?06?11?2002) de la Universidad Politecnica de Valencia, Direccion General de Politica Cientifica de la Generalitat Valenciana (GV/2013/119) and Programa Prometeo (PROMETEO/2012/030) de la Conselleria d'Educacio Formacio I Ocupacio, Generalitat Valenciana. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Action-potential propagation es_ES
dc.subject Cardiac tissue es_ES
dc.subject Safety factor es_ES
dc.subject Vulnerable period es_ES
dc.subject Slow conduction es_ES
dc.subject Muscle es_ES
dc.subject Excitability es_ES
dc.subject Model es_ES
dc.subject Arrhythmias es_ES
dc.subject Fibrillation es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Non-Uniform Dispersion of the Source-Sink Relationship Alters Wavefront Curvature es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0078328
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2012-37546-C03-01/ES/CORAZON HUMANO COMPLETO FISIOLOGICO VIRTUAL: MEJORAS EN EL TRATAMIENTO DE ARRITMIAS CARDIACAS ORIENTADO A PACIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MITURCO//TSI-020100-2010-0469/ES/LocMoTIC. Localización del Origen de Arritmias Cardíacas Mediante Modelado y Tecnologías de la Información y Comunicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-11-2002/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2013%2F119/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F030/ES/MEJORA EN LA PREVENCION Y TRATAMIENTO DE PATOLOGIAS CARDIACAS A TRAVES DE LA MODELIZACION MULTI-ESCALA Y LA SIMULACION COMPUTACIONAL (DIGITAL HEART)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.description.bibliographicCitation Romero Pérez, L.; Trénor Gomis, BA.; Ferrero De Loma-Osorio, JM.; Starmer, CF. (2013). Non-Uniform Dispersion of the Source-Sink Relationship Alters Wavefront Curvature. PLoS ONE. 1-12. https://doi.org/10.1371/journal.pone.0078328 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1371/journal.pone.0078328 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 254374
dc.identifier.pmid 24223791 en_EN
dc.identifier.pmcid PMC3817246 en_EN
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Industria, Turismo y Comercio es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Cabo, C., Pertsov, A. M., Baxter, W. T., Davidenko, J. M., Gray, R. A., & Jalife, J. (1994). Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle. Circulation Research, 75(6), 1014-1028. doi:10.1161/01.res.75.6.1014 es_ES
dc.description.references Fast, V. G., & Kléber, A. G. (1997). Role of wavefront curvature in propagation of cardiac impulse. Cardiovascular Research, 33(2), 258-271. doi:10.1016/s0008-6363(96)00216-7 es_ES
dc.description.references KLÉBER, A. G., & RUDY, Y. (2004). Basic Mechanisms of Cardiac Impulse Propagation and Associated Arrhythmias. Physiological Reviews, 84(2), 431-488. doi:10.1152/physrev.00025.2003 es_ES
dc.description.references Wellner, M., & Pertsov, A. M. (1997). Generalized eikonal equation in excitable media. Physical Review E, 55(6), 7656-7661. doi:10.1103/physreve.55.7656 es_ES
dc.description.references Vaquero, M., Calvo, D., & Jalife, J. (2008). Cardiac fibrillation: From ion channels to rotors in the human heart. Heart Rhythm, 5(6), 872-879. doi:10.1016/j.hrthm.2008.02.034 es_ES
dc.description.references Delgado, C., Steinhaus, B., Delmar, M., Chialvo, D. R., & Jalife, J. (1990). Directional differences in excitability and margin of safety for propagation in sheep ventricular epicardial muscle. Circulation Research, 67(1), 97-110. doi:10.1161/01.res.67.1.97 es_ES
dc.description.references Shaw, R. M., & Rudy, Y. (1997). Ionic Mechanisms of Propagation in Cardiac Tissue. Circulation Research, 81(5), 727-741. doi:10.1161/01.res.81.5.727 es_ES
dc.description.references Wang, Y., & Rudy, Y. (2000). Action potential propagation in inhomogeneous cardiac tissue: safety factor considerations and ionic mechanism. American Journal of Physiology-Heart and Circulatory Physiology, 278(4), H1019-H1029. doi:10.1152/ajpheart.2000.278.4.h1019 es_ES
dc.description.references Romero, L., Trénor, B., Alonso, J. M., Tobón, C., Saiz, J., & Ferrero, J. M. (2009). The Relative Role of Refractoriness and Source–Sink Relationship in Reentry Generation during Simulated Acute Ischemia. Annals of Biomedical Engineering, 37(8), 1560-1571. doi:10.1007/s10439-009-9721-2 es_ES
dc.description.references Boyle, P. M., & Vigmond, E. J. (2010). An Intuitive Safety Factor for Cardiac Propagation. Biophysical Journal, 98(12), L57-L59. doi:10.1016/j.bpj.2010.03.018 es_ES
dc.description.references Kucera, J. P., & Rudy, Y. (2001). Mechanistic Insights Into Very Slow Conduction in Branching Cardiac Tissue. Circulation Research, 89(9), 799-806. doi:10.1161/hh2101.098442 es_ES
dc.description.references Azene, E. M., Trayanova, N. A., & Warman, E. (2001). Wave Front–Obstacle Interactions in Cardiac Tissue: A Computational Study. Annals of Biomedical Engineering, 29(1), 35-46. doi:10.1114/1.1332083 es_ES
dc.description.references Aslanidi, O. V., Stewart, P., Boyett, M. R., & Zhang, H. (2009). Optimal Velocity and Safety of Discontinuous Conduction through the Heterogeneous Purkinje-Ventricular Junction. Biophysical Journal, 97(1), 20-39. doi:10.1016/j.bpj.2009.03.061 es_ES
dc.description.references Hubbard, M. L., & Henriquez, C. S. (2010). Increased interstitial loading reduces the effect of microstructural variations in cardiac tissue. American Journal of Physiology-Heart and Circulatory Physiology, 298(4), H1209-H1218. doi:10.1152/ajpheart.00689.2009 es_ES
dc.description.references Ten Tusscher, K. H. W. J., & Panfilov, A. V. (2006). Alternans and spiral breakup in a human ventricular tissue model. American Journal of Physiology-Heart and Circulatory Physiology, 291(3), H1088-H1100. doi:10.1152/ajpheart.00109.2006 es_ES
dc.description.references Van Capelle, F. J., & Durrer, D. (1980). Computer simulation of arrhythmias in a network of coupled excitable elements. Circulation Research, 47(3), 454-466. doi:10.1161/01.res.47.3.454 es_ES
dc.description.references STARMER, C. F. (1997). The Cardiac Vulnerable Period and Reentrant Arrhythmias: Targets of Anti- and Proarrhythmic Processes. Pacing and Clinical Electrophysiology, 20(2), 445-454. doi:10.1111/j.1540-8159.1997.tb06203.x es_ES
dc.description.references Starmer, C. (2003). What happens when cardiac Na channels lose their function? 1 – Numerical studies of the vulnerable period in tissue expressing mutant channels. Cardiovascular Research, 57(1), 82-91. doi:10.1016/s0008-6363(02)00613-2 es_ES
dc.description.references Allessie, M. A., Bonke, F. I., & Schopman, F. J. (1976). Circus movement in rabbit atrial muscle as a mechanism of tachycardia. II. The role of nonuniform recovery of excitability in the occurrence of unidirectional block, as studied with multiple microelectrodes. Circulation Research, 39(2), 168-177. doi:10.1161/01.res.39.2.168 es_ES
dc.description.references HAN, J., & MOE, G. K. (1964). Nonuniform Recovery of Excitability in Ventricular Muscle. Circulation Research, 14(1), 44-60. doi:10.1161/01.res.14.1.44 es_ES
dc.description.references Clayton, R. H., & Holden, A. V. (2005). BioMedical Engineering OnLine, 4(1), 11. doi:10.1186/1475-925x-4-11 es_ES
dc.description.references ZHAO, J., TREW, M. L., LEGRICE, I. J., SMAILL, B. H., & PULLAN, A. J. (2009). A Tissue-Specific Model of Reentry in the Right Atrial Appendage. Journal of Cardiovascular Electrophysiology, 20(6), 675-684. doi:10.1111/j.1540-8167.2008.01420.x es_ES
dc.description.references Ong, J. J., Cha, Y. M., Kriett, J. M., Boyce, K., Feld, G. K., & Chen, P. S. (1995). The relation between atrial fibrillation wavefront characteristics and accessory pathway conduction. Journal of Clinical Investigation, 96(5), 2284-2296. doi:10.1172/jci118284 es_ES
dc.description.references DANSE, P. W., GARRATT, C. J., MAST, F., & ALLESSIE, M. A. (2000). Preferential Depression of Conduction Around a Pivot Point in Rabbit Ventricular Myocardium by Potassium and Flecainide. Journal of Cardiovascular Electrophysiology, 11(3), 262-273. doi:10.1111/j.1540-8167.2000.tb01795.x es_ES
dc.description.references Stein, M., van Veen, T. A. B., Hauer, R. N. W., de Bakker, J. M. T., & van Rijen, H. V. M. (2011). A 50% Reduction of Excitability but Not of Intercellular Coupling Affects Conduction Velocity Restitution and Activation Delay in the Mouse Heart. PLoS ONE, 6(6), e20310. doi:10.1371/journal.pone.0020310 es_ES
dc.description.references Leon, L. J., & Roberge, F. A. (1991). Directional characteristics of action potential propagation in cardiac muscle. A model study. Circulation Research, 69(2), 378-395. doi:10.1161/01.res.69.2.378 es_ES
dc.description.references Faber, G. M., & Rudy, Y. (2000). Action Potential and Contractility Changes in [Na+]i Overloaded Cardiac Myocytes: A Simulation Study. Biophysical Journal, 78(5), 2392-2404. doi:10.1016/s0006-3495(00)76783-x es_ES
dc.description.references Spach, M. S., Miller, W. T., Geselowitz, D. B., Barr, R. C., Kootsey, J. M., & Johnson, E. A. (1981). The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents. Circulation Research, 48(1), 39-54. doi:10.1161/01.res.48.1.39 es_ES
dc.description.references EFIMOV, I. R., CHENG, Y. N., BIERMANN, M., WAGONER, D. R., MAZGALEV, T. N., & TCHOU, P. J. (1997). Transmembrane Voltage Changes Produced by Real and Virtual Electrodes During Monophasic Defibrillation Shock Delivered by an Implantable Electrode. Journal of Cardiovascular Electrophysiology, 8(9), 1031-1045. doi:10.1111/j.1540-8167.1997.tb00627.x es_ES
dc.description.references Sambelashvili, A. T., Nikolski, V. P., & Efimov, I. R. (2003). Nonlinear effects in subthreshold virtual electrode polarization. American Journal of Physiology-Heart and Circulatory Physiology, 284(6), H2368-H2374. doi:10.1152/ajpheart.00988.2002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem