- -

Non-Uniform Dispersion of the Source-Sink Relationship Alters Wavefront Curvature

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-Uniform Dispersion of the Source-Sink Relationship Alters Wavefront Curvature

Mostrar el registro completo del ítem

Romero Pérez, L.; Trénor Gomis, BA.; Ferrero De Loma-Osorio, JM.; Starmer, CF. (2013). Non-Uniform Dispersion of the Source-Sink Relationship Alters Wavefront Curvature. PLoS ONE. 1-12. https://doi.org/10.1371/journal.pone.0078328

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/39288

Ficheros en el ítem

Metadatos del ítem

Título: Non-Uniform Dispersion of the Source-Sink Relationship Alters Wavefront Curvature
Autor: Romero Pérez, Lucia Trénor Gomis, Beatriz Ana Ferrero De Loma-Osorio, José María Starmer, C. Frank
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Fecha difusión:
Resumen:
The distribution of cellular source-sink relationships plays an important role in cardiac propagation. It can lead to conduction slowing and block as well as wave fractionation. It is of great interest to unravel the ...[+]
Palabras clave: Action-potential propagation , Cardiac tissue , Safety factor , Vulnerable period , Slow conduction , Muscle , Excitability , Model , Arrhythmias , Fibrillation
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS ONE. (issn: 1932-6203 )
DOI: 10.1371/journal.pone.0078328
Editorial:
Public Library of Science
Versión del editor: http://dx.doi.org/10.1371/journal.pone.0078328
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2012-37546-C03-01/ES/CORAZON HUMANO COMPLETO FISIOLOGICO VIRTUAL: MEJORAS EN EL TRATAMIENTO DE ARRITMIAS CARDIACAS ORIENTADO A PACIENTE/
info:eu-repo/grantAgreement/MITURCO//TSI-020100-2010-0469/ES/LocMoTIC. Localización del Origen de Arritmias Cardíacas Mediante Modelado y Tecnologías de la Información y Comunicaciones/
info:eu-repo/grantAgreement/UPV//PAID-06-11-2002/
info:eu-repo/grantAgreement/GVA//GV%2F2013%2F119/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F030/ES/MEJORA EN LA PREVENCION Y TRATAMIENTO DE PATOLOGIAS CARDIACAS A TRAVES DE LA MODELIZACION MULTI-ESCALA Y LA SIMULACION COMPUTACIONAL (DIGITAL HEART)/
Agradecimientos:
This work was partially supported by the "VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica'' from the Ministerio de Economia y Competitividad of Spain (TIN2012?37546?C03?01) and the European ...[+]
Tipo: Artículo

References

Cabo, C., Pertsov, A. M., Baxter, W. T., Davidenko, J. M., Gray, R. A., & Jalife, J. (1994). Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle. Circulation Research, 75(6), 1014-1028. doi:10.1161/01.res.75.6.1014

Fast, V. G., & Kléber, A. G. (1997). Role of wavefront curvature in propagation of cardiac impulse. Cardiovascular Research, 33(2), 258-271. doi:10.1016/s0008-6363(96)00216-7

KLÉBER, A. G., & RUDY, Y. (2004). Basic Mechanisms of Cardiac Impulse Propagation and Associated Arrhythmias. Physiological Reviews, 84(2), 431-488. doi:10.1152/physrev.00025.2003 [+]
Cabo, C., Pertsov, A. M., Baxter, W. T., Davidenko, J. M., Gray, R. A., & Jalife, J. (1994). Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle. Circulation Research, 75(6), 1014-1028. doi:10.1161/01.res.75.6.1014

Fast, V. G., & Kléber, A. G. (1997). Role of wavefront curvature in propagation of cardiac impulse. Cardiovascular Research, 33(2), 258-271. doi:10.1016/s0008-6363(96)00216-7

KLÉBER, A. G., & RUDY, Y. (2004). Basic Mechanisms of Cardiac Impulse Propagation and Associated Arrhythmias. Physiological Reviews, 84(2), 431-488. doi:10.1152/physrev.00025.2003

Wellner, M., & Pertsov, A. M. (1997). Generalized eikonal equation in excitable media. Physical Review E, 55(6), 7656-7661. doi:10.1103/physreve.55.7656

Vaquero, M., Calvo, D., & Jalife, J. (2008). Cardiac fibrillation: From ion channels to rotors in the human heart. Heart Rhythm, 5(6), 872-879. doi:10.1016/j.hrthm.2008.02.034

Delgado, C., Steinhaus, B., Delmar, M., Chialvo, D. R., & Jalife, J. (1990). Directional differences in excitability and margin of safety for propagation in sheep ventricular epicardial muscle. Circulation Research, 67(1), 97-110. doi:10.1161/01.res.67.1.97

Shaw, R. M., & Rudy, Y. (1997). Ionic Mechanisms of Propagation in Cardiac Tissue. Circulation Research, 81(5), 727-741. doi:10.1161/01.res.81.5.727

Wang, Y., & Rudy, Y. (2000). Action potential propagation in inhomogeneous cardiac tissue: safety factor considerations and ionic mechanism. American Journal of Physiology-Heart and Circulatory Physiology, 278(4), H1019-H1029. doi:10.1152/ajpheart.2000.278.4.h1019

Romero, L., Trénor, B., Alonso, J. M., Tobón, C., Saiz, J., & Ferrero, J. M. (2009). The Relative Role of Refractoriness and Source–Sink Relationship in Reentry Generation during Simulated Acute Ischemia. Annals of Biomedical Engineering, 37(8), 1560-1571. doi:10.1007/s10439-009-9721-2

Boyle, P. M., & Vigmond, E. J. (2010). An Intuitive Safety Factor for Cardiac Propagation. Biophysical Journal, 98(12), L57-L59. doi:10.1016/j.bpj.2010.03.018

Kucera, J. P., & Rudy, Y. (2001). Mechanistic Insights Into Very Slow Conduction in Branching Cardiac Tissue. Circulation Research, 89(9), 799-806. doi:10.1161/hh2101.098442

Azene, E. M., Trayanova, N. A., & Warman, E. (2001). Wave Front–Obstacle Interactions in Cardiac Tissue: A Computational Study. Annals of Biomedical Engineering, 29(1), 35-46. doi:10.1114/1.1332083

Aslanidi, O. V., Stewart, P., Boyett, M. R., & Zhang, H. (2009). Optimal Velocity and Safety of Discontinuous Conduction through the Heterogeneous Purkinje-Ventricular Junction. Biophysical Journal, 97(1), 20-39. doi:10.1016/j.bpj.2009.03.061

Hubbard, M. L., & Henriquez, C. S. (2010). Increased interstitial loading reduces the effect of microstructural variations in cardiac tissue. American Journal of Physiology-Heart and Circulatory Physiology, 298(4), H1209-H1218. doi:10.1152/ajpheart.00689.2009

Ten Tusscher, K. H. W. J., & Panfilov, A. V. (2006). Alternans and spiral breakup in a human ventricular tissue model. American Journal of Physiology-Heart and Circulatory Physiology, 291(3), H1088-H1100. doi:10.1152/ajpheart.00109.2006

Van Capelle, F. J., & Durrer, D. (1980). Computer simulation of arrhythmias in a network of coupled excitable elements. Circulation Research, 47(3), 454-466. doi:10.1161/01.res.47.3.454

STARMER, C. F. (1997). The Cardiac Vulnerable Period and Reentrant Arrhythmias: Targets of Anti- and Proarrhythmic Processes. Pacing and Clinical Electrophysiology, 20(2), 445-454. doi:10.1111/j.1540-8159.1997.tb06203.x

Starmer, C. (2003). What happens when cardiac Na channels lose their function? 1 – Numerical studies of the vulnerable period in tissue expressing mutant channels. Cardiovascular Research, 57(1), 82-91. doi:10.1016/s0008-6363(02)00613-2

Allessie, M. A., Bonke, F. I., & Schopman, F. J. (1976). Circus movement in rabbit atrial muscle as a mechanism of tachycardia. II. The role of nonuniform recovery of excitability in the occurrence of unidirectional block, as studied with multiple microelectrodes. Circulation Research, 39(2), 168-177. doi:10.1161/01.res.39.2.168

HAN, J., & MOE, G. K. (1964). Nonuniform Recovery of Excitability in Ventricular Muscle. Circulation Research, 14(1), 44-60. doi:10.1161/01.res.14.1.44

Clayton, R. H., & Holden, A. V. (2005). BioMedical Engineering OnLine, 4(1), 11. doi:10.1186/1475-925x-4-11

ZHAO, J., TREW, M. L., LEGRICE, I. J., SMAILL, B. H., & PULLAN, A. J. (2009). A Tissue-Specific Model of Reentry in the Right Atrial Appendage. Journal of Cardiovascular Electrophysiology, 20(6), 675-684. doi:10.1111/j.1540-8167.2008.01420.x

Ong, J. J., Cha, Y. M., Kriett, J. M., Boyce, K., Feld, G. K., & Chen, P. S. (1995). The relation between atrial fibrillation wavefront characteristics and accessory pathway conduction. Journal of Clinical Investigation, 96(5), 2284-2296. doi:10.1172/jci118284

DANSE, P. W., GARRATT, C. J., MAST, F., & ALLESSIE, M. A. (2000). Preferential Depression of Conduction Around a Pivot Point in Rabbit Ventricular Myocardium by Potassium and Flecainide. Journal of Cardiovascular Electrophysiology, 11(3), 262-273. doi:10.1111/j.1540-8167.2000.tb01795.x

Stein, M., van Veen, T. A. B., Hauer, R. N. W., de Bakker, J. M. T., & van Rijen, H. V. M. (2011). A 50% Reduction of Excitability but Not of Intercellular Coupling Affects Conduction Velocity Restitution and Activation Delay in the Mouse Heart. PLoS ONE, 6(6), e20310. doi:10.1371/journal.pone.0020310

Leon, L. J., & Roberge, F. A. (1991). Directional characteristics of action potential propagation in cardiac muscle. A model study. Circulation Research, 69(2), 378-395. doi:10.1161/01.res.69.2.378

Faber, G. M., & Rudy, Y. (2000). Action Potential and Contractility Changes in [Na+]i Overloaded Cardiac Myocytes: A Simulation Study. Biophysical Journal, 78(5), 2392-2404. doi:10.1016/s0006-3495(00)76783-x

Spach, M. S., Miller, W. T., Geselowitz, D. B., Barr, R. C., Kootsey, J. M., & Johnson, E. A. (1981). The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents. Circulation Research, 48(1), 39-54. doi:10.1161/01.res.48.1.39

EFIMOV, I. R., CHENG, Y. N., BIERMANN, M., WAGONER, D. R., MAZGALEV, T. N., & TCHOU, P. J. (1997). Transmembrane Voltage Changes Produced by Real and Virtual Electrodes During Monophasic Defibrillation Shock Delivered by an Implantable Electrode. Journal of Cardiovascular Electrophysiology, 8(9), 1031-1045. doi:10.1111/j.1540-8167.1997.tb00627.x

Sambelashvili, A. T., Nikolski, V. P., & Efimov, I. R. (2003). Nonlinear effects in subthreshold virtual electrode polarization. American Journal of Physiology-Heart and Circulatory Physiology, 284(6), H2368-H2374. doi:10.1152/ajpheart.00988.2002

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem