- -

An Extracellular Subtilase Switch for Immune Priming in Arabidopsis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Extracellular Subtilase Switch for Immune Priming in Arabidopsis

Mostrar el registro completo del ítem

Ramirez Garcia, V.; López Sánchez, A.; Mauch-Mani, B.; Gil Morrió, MJ.; Vera Vera, P. (2013). An Extracellular Subtilase Switch for Immune Priming in Arabidopsis. PLoS Pathogens. 9(6):1003445-1003445. https://doi.org/10.1371/journal.ppat.1003445

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/39317

Ficheros en el ítem

Metadatos del ítem

Título: An Extracellular Subtilase Switch for Immune Priming in Arabidopsis
Autor: Ramirez Garcia, Vicente López Sánchez, Ana Mauch-Mani, Brigitte Gil Morrió, María José Vera Vera, Pablo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of ...[+]
Palabras clave: Systemic acquired-resistance , Apoplastic oxidative burst , Pattern-triggered immunity , Beta-aminobutyric acid , Pseudomonas-syringae , Plant protease , Tomato plants , Defense , Gene , Expression
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS Pathogens. (issn: 1553-7366 )
DOI: 10.1371/journal.ppat.1003445
Editorial:
Public Library of Science
Versión del editor: http://dx.doi.org/10.1371/journal.ppat.1003445
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BFU2009-09771/ES/Mecanismos De Control De La Resistencia%2FSusceptibilidad A Patogenos En Arabidopsis/
info:eu-repo/grantAgreement/MICINN//EUI2009-04009/ES/IDENTIFICATION OF NEW PLANT SUSCEPTIBILITY FACTORS WHOSE MODIFICATION WOULD CONFER VIRUS RESISTANCE/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F020/ES/Identificación de nuevos fármacos con potencia potencial uso biotecnológico en cultivos mediante un abordaje de genética química/
Agradecimientos:
The Spanish MICINN (BFU2009-09771, EUI2009-04009 to PV) and Generalitat Valenciana (Prometeo2010/020 to PV) provided support for this work. The funders had no role in study design, data collection and analysis, decision ...[+]
Tipo: Artículo

References

Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. doi:10.1038/nature05286

Moore, J. W., Loake, G. J., & Spoel, S. H. (2011). Transcription Dynamics in Plant Immunity. The Plant Cell, 23(8), 2809-2820. doi:10.1105/tpc.111.087346

Netea, M. G., Quintin, J., & van der Meer, J. W. M. (2011). Trained Immunity: A Memory for Innate Host Defense. Cell Host & Microbe, 9(5), 355-361. doi:10.1016/j.chom.2011.04.006 [+]
Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. doi:10.1038/nature05286

Moore, J. W., Loake, G. J., & Spoel, S. H. (2011). Transcription Dynamics in Plant Immunity. The Plant Cell, 23(8), 2809-2820. doi:10.1105/tpc.111.087346

Netea, M. G., Quintin, J., & van der Meer, J. W. M. (2011). Trained Immunity: A Memory for Innate Host Defense. Cell Host & Microbe, 9(5), 355-361. doi:10.1016/j.chom.2011.04.006

Durrant, W. E., & Dong, X. (2004). SYSTEMIC ACQUIRED RESISTANCE. Annual Review of Phytopathology, 42(1), 185-209. doi:10.1146/annurev.phyto.42.040803.140421

Van Wees, S. C., Van der Ent, S., & Pieterse, C. M. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11(4), 443-448. doi:10.1016/j.pbi.2008.05.005

KUĆ, J. (1987). Translocated Signals for Plant Immunization. Annals of the New York Academy of Sciences, 494(1 Third Colloqu), 221-223. doi:10.1111/j.1749-6632.1987.tb29529.x

Zimmerli, L., Jakab, G., Metraux, J.-P., & Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta -aminobutyric acid. Proceedings of the National Academy of Sciences, 97(23), 12920-12925. doi:10.1073/pnas.230416897

Hayes, M. P., Enterline, J. C., Gerrard, T. L., & Zoon, K. C. (1991). Regulation of Interferon Production by Human Monocytes: Requirements for Priming for Lipopolysaccharide-Induced Production. Journal of Leukocyte Biology, 50(2), 176-181. doi:10.1002/jlb.50.2.176

Gifford, G. E., & Lohmann-Matthes, M.-L. (1987). Gamma Interferon Priming of Mouse and Human Macrophages for Induction of Tumor Necrosis Factor Production by Bacterial Lipopolysaccharide. JNCI: Journal of the National Cancer Institute, 78(1), 121-124. doi:10.1093/jnci/78.1.121

Koerner, T. J., Adams, D. O., & Hamilton, T. A. (1987). Regulation of tumor necrosis factor (TNF) expression: Interferon-γ enhances the accumulation of mRNA for TNF induced by lipopolysaccharide in murine peritoneal macrophages. Cellular Immunology, 109(2), 437-443. doi:10.1016/0008-8749(87)90326-1

Pham, L. N., Dionne, M. S., Shirasu-Hiza, M., & Schneider, D. S. (2007). A Specific Primed Immune Response in Drosophila Is Dependent on Phagocytes. PLoS Pathogens, 3(3), e26. doi:10.1371/journal.ppat.0030026

Beckers, G. J. M., Jaskiewicz, M., Liu, Y., Underwood, W. R., He, S. Y., Zhang, S., & Conrath, U. (2009). Mitogen-Activated Protein Kinases 3 and 6 Are Required for Full Priming of Stress Responses in Arabidopsis thaliana. The Plant Cell, 21(3), 944-953. doi:10.1105/tpc.108.062158

Kohler, A., Schwindling, S., & Conrath, U. (2002). Benzothiadiazole-Induced Priming for Potentiated Responses to Pathogen Infection, Wounding, and Infiltration of Water into Leaves Requires the NPR1/NIM1 Gene in Arabidopsis. Plant Physiology, 128(3), 1046-1056. doi:10.1104/pp.010744

Dempsey, D. A., & Klessig, D. F. (2012). SOS – too many signals for systemic acquired resistance? Trends in Plant Science, 17(9), 538-545. doi:10.1016/j.tplants.2012.05.011

Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J., & Greenberg, J. T. (2009). Priming in Systemic Plant Immunity. Science, 324(5923), 89-91. doi:10.1126/science.1170025

Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., & Hunt, M. D. (1996). Systemic Acquired Resistance. The Plant Cell, 1809-1819. doi:10.1105/tpc.8.10.1809

Zimmerli, L., Métraux, J.-P., & Mauch-Mani, B. (2001). β-Aminobutyric Acid-Induced Protection of Arabidopsis against the Necrotrophic Fungus Botrytis cinerea. Plant Physiology, 126(2), 517-523. doi:10.1104/pp.126.2.517

Conrath, U., Beckers, G. J. M., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., … Mauch-Mani, B. (2006). Priming: Getting Ready for Battle. Molecular Plant-Microbe Interactions, 19(10), 1062-1071. doi:10.1094/mpmi-19-1062

Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12(2), 89-100. doi:10.1038/nri3141

Jaskiewicz, M., Conrath, U., & Peterhänsel, C. (2010). Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO reports, 12(1), 50-55. doi:10.1038/embor.2010.186

Mosher, R. A., Durrant, W. E., Wang, D., Song, J., & Dong, X. (2006). A Comprehensive Structure–Function Analysis of Arabidopsis SNI1 Defines Essential Regions and Transcriptional Repressor Activity. The Plant Cell, 18(7), 1750-1765. doi:10.1105/tpc.105.039677

Law, J. A., & Jacobsen, S. E. (2009). MOLECULAR BIOLOGY: Dynamic DNA Methylation. Science, 323(5921), 1568-1569. doi:10.1126/science.1172782

López, A., Ramírez, V., García-Andrade, J., Flors, V., & Vera, P. (2011). The RNA Silencing Enzyme RNA Polymerase V Is Required for Plant Immunity. PLoS Genetics, 7(12), e1002434. doi:10.1371/journal.pgen.1002434

Luna, E., Bruce, T. J. A., Roberts, M. R., Flors, V., & Ton, J. (2011). Next-Generation Systemic Acquired Resistance. Plant Physiology, 158(2), 844-853. doi:10.1104/pp.111.187468

Slaughter, A., Daniel, X., Flors, V., Luna, E., Hohn, B., & Mauch-Mani, B. (2011). Descendants of Primed Arabidopsis Plants Exhibit Resistance to Biotic Stress. Plant Physiology, 158(2), 835-843. doi:10.1104/pp.111.191593

Gil, M. J., Coego, A., Mauch-Mani, B., Jordá, L., & Vera, P. (2005). The Arabidopsis csb3 mutant reveals a regulatory link between salicylic acid-mediated disease resistance and the methyl-erythritol 4-phosphate pathway. The Plant Journal, 44(1), 155-166. doi:10.1111/j.1365-313x.2005.02517.x

Jordá, L., & Vera, P. (2000). Local and Systemic Induction of Two Defense-Related Subtilisin-Like Protease Promoters in Transgenic Arabidopsis Plants. Luciferin Induction of PR Gene Expression. Plant Physiology, 124(3), 1049-1058. doi:10.1104/pp.124.3.1049

Rautengarten, C., Steinhauser, D., Büssis, D., Stintzi, A., Schaller, A., Kopka, J., & Altmann, T. (2005). Inferring Hypotheses on Functional Relationships of Genes: Analysis of the Arabidopsis thaliana Subtilase Gene Family. PLoS Computational Biology, 1(4), e40. doi:10.1371/journal.pcbi.0010040

Jordá, L., Coego, A., Conejero, V., & Vera, P. (1999). A Genomic Cluster Containing Four Differentially Regulated Subtilisin-like Processing Protease Genes Is in Tomato Plants. Journal of Biological Chemistry, 274(4), 2360-2365. doi:10.1074/jbc.274.4.2360

Tornero, P., Conejero, V., & Vera, P. (1996). Primary structure and expression of a pathogen-induced protease (PR-P69) in tomato plants: Similarity of functional domains to subtilisin-like endoproteases. Proceedings of the National Academy of Sciences, 93(13), 6332-6337. doi:10.1073/pnas.93.13.6332

Dong, X., Mindrinos, M., Davis, K. R., & Ausubel, F. M. (1991). Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. The Plant Cell, 3(1), 61-72. doi:10.1105/tpc.3.1.61

Bolwell GP, Daudi A (2009) Reactive oxygen species in plant-pathogen interactions. <italic>In</italic> LA del Rio, A Puppo, eds, Reactive Oxygen Species in Plant Signaling. Springer-Verlag, Berlin, pp 113–133.

Rentel, M. C., Lecourieux, D., Ouaked, F., Usher, S. L., Petersen, L., Okamoto, H., … Knight, M. R. (2004). OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature, 427(6977), 858-861. doi:10.1038/nature02353

Schaller, A., Stintzi, A., & Graff, L. (2011). Subtilases - versatile tools for protein turnover, plant development, and interactions with the environment. Physiologia Plantarum, 145(1), 52-66. doi:10.1111/j.1399-3054.2011.01529.x

Takeda, N., Sato, S., Asamizu, E., Tabata, S., & Parniske, M. (2009). Apoplastic plant subtilases support arbuscular mycorrhiza development inLotus japonicus. The Plant Journal, 58(5), 766-777. doi:10.1111/j.1365-313x.2009.03824.x

Chichkova, N. V., Shaw, J., Galiullina, R. A., Drury, G. E., Tuzhikov, A. I., Kim, S. H., … Taliansky, M. (2010). Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. The EMBO Journal, 29(6), 1149-1161. doi:10.1038/emboj.2010.1

Bykova, N. V., Rampitsch, C., Krokhin, O., Standing, K. G., & Ens, W. (2006). Determination and Characterization of Site-Specific N-Glycosylation Using MALDI-Qq-TOF Tandem Mass Spectrometry:  Case Study with a Plant Protease. Analytical Chemistry, 78(4), 1093-1103. doi:10.1021/ac0512711

Cedzich, A., Huttenlocher, F., Kuhn, B. M., Pfannstiel, J., Gabler, L., Stintzi, A., & Schaller, A. (2009). The Protease-associated Domain and C-terminal Extension Are Required for Zymogen Processing, Sorting within the Secretory Pathway, and Activity of Tomato Subtilase 3 (SlSBT3). Journal of Biological Chemistry, 284(21), 14068-14078. doi:10.1074/jbc.m900370200

Spoel, S. H., Koornneef, A., Claessens, S. M. C., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., … Pieterse, C. M. J. (2003). NPR1 Modulates Cross-Talk between Salicylate- and Jasmonate-Dependent Defense Pathways through a Novel Function in the Cytosol. The Plant Cell, 15(3), 760-770. doi:10.1105/tpc.009159

Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W.-L., Gomez-Gomez, L., … Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415(6875), 977-983. doi:10.1038/415977a

Bethke, G., Unthan, T., Uhrig, J. F., Poschl, Y., Gust, A. A., Scheel, D., & Lee, J. (2009). Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proceedings of the National Academy of Sciences, 106(19), 8067-8072. doi:10.1073/pnas.0810206106

Bethke, G., Pecher, P., Eschen-Lippold, L., Tsuda, K., Katagiri, F., Glazebrook, J., … Lee, J. (2012). Activation of the Arabidopsis thaliana Mitogen-Activated Protein Kinase MPK11 by the Flagellin-Derived Elicitor Peptide, flg22. Molecular Plant-Microbe Interactions, 25(4), 471-480. doi:10.1094/mpmi-11-11-0281

Rushton, P. J., Somssich, I. E., Ringler, P., & Shen, Q. J. (2010). WRKY transcription factors. Trends in Plant Science, 15(5), 247-258. doi:10.1016/j.tplants.2010.02.006

Dong, J., Chen, C., & Chen, Z. (2003). Plant Molecular Biology, 51(1), 21-37. doi:10.1023/a:1020780022549

Zhang, H., Deng, X., Miki, D., Cutler, S., La, H., Hou, Y.-J., … Zhu, J.-K. (2012). Sulfamethazine Suppresses Epigenetic Silencing in Arabidopsis by Impairing Folate Synthesis. The Plant Cell, 24(3), 1230-1241. doi:10.1105/tpc.112.096149

Coego, A., Ramirez, V., Ellul, P., Mayda, E., & Vera, P. (2005). The H2O2-regulated Ep5C gene encodes a peroxidase required for bacterial speck susceptibility in tomato. The Plant Journal, 42(2), 283-293. doi:10.1111/j.1365-313x.2005.02372.x

Daudi, A., Cheng, Z., O’Brien, J. A., Mammarella, N., Khan, S., Ausubel, F. M., & Bolwell, G. P. (2012). The Apoplastic Oxidative Burst Peroxidase in Arabidopsis Is a Major Component of Pattern-Triggered Immunity. The Plant Cell, 24(1), 275-287. doi:10.1105/tpc.111.093039

O’Brien, J. A., Daudi, A., Finch, P., Butt, V. S., Whitelegge, J. P., Souda, P., … Bolwell, G. P. (2012). A Peroxidase-Dependent Apoplastic Oxidative Burst in Cultured Arabidopsis Cells Functions in MAMP-Elicited Defense. Plant Physiology, 158(4), 2013-2027. doi:10.1104/pp.111.190140

OSSOVSKAYA, V. S., & BUNNETT, N. W. (2004). Protease-Activated Receptors: Contribution to Physiology and Disease. Physiological Reviews, 84(2), 579-621. doi:10.1152/physrev.00028.2003

Buchon, N., Poidevin, M., Kwon, H.-M., Guillou, A., Sottas, V., Lee, B.-L., & Lemaitre, B. (2009). A single modular serine protease integrates signals from pattern-recognition receptors upstream of the Drosophila Toll pathway. Proceedings of the National Academy of Sciences, 106(30), 12442-12447. doi:10.1073/pnas.0901924106

Brunn, G. J., Bungum, M. K., Johnson, G. B., & Platt, J. L. (2005). Conditional signaling by Toll-like receptor 4. The FASEB Journal, 19(7), 872-874. doi:10.1096/fj.04-3211fje

De Zoete, M. R., Bouwman, L. I., Keestra, A. M., & van Putten, J. P. M. (2011). Cleavage and activation of a Toll-like receptor by microbial proteases. Proceedings of the National Academy of Sciences, 108(12), 4968-4973. doi:10.1073/pnas.1018135108

Singh, P., Kuo, Y.-C., Mishra, S., Tsai, C.-H., Chien, C.-C., Chen, C.-W., … Zimmerli, L. (2012). The Lectin Receptor Kinase-VI.2 Is Required for Priming and Positively Regulates Arabidopsis Pattern-Triggered Immunity. The Plant Cell, 24(3), 1256-1270. doi:10.1105/tpc.112.095778

Agorio, A., & Vera, P. (2007). ARGONAUTE4 Is Required for Resistance to Pseudomonas syringae in Arabidopsis. The Plant Cell, 19(11), 3778-3790. doi:10.1105/tpc.107.054494

Haring, M., Offermann, S., Danker, T., Horst, I., Peterhansel, C., & Stam, M. (2007). Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods, 3(1), 11. doi:10.1186/1746-4811-3-11

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem