Mostrar el registro sencillo del ítem
dc.contributor.author | Ramirez Garcia, Vicente | es_ES |
dc.contributor.author | López Sánchez, Ana | es_ES |
dc.contributor.author | Mauch-Mani, Brigitte | es_ES |
dc.contributor.author | Gil Morrió, María José | es_ES |
dc.contributor.author | Vera Vera, Pablo | es_ES |
dc.date.accessioned | 2014-09-01T10:22:42Z | |
dc.date.available | 2014-09-01T10:22:42Z | |
dc.date.issued | 2013-06 | |
dc.identifier.issn | 1553-7366 | |
dc.identifier.uri | http://hdl.handle.net/10251/39317 | |
dc.description.abstract | In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of immunological memory is not well known. We identified an extracellular subtilase from Arabidopsis, SBT3.3, the overexpression of which enhances innate immune responses while the loss of function compromises them. SBT3.3 expression initiates a durable autoinduction mechanism that promotes chromatin remodeling and activates a salicylic acid(SA)-dependent mechanism of priming of defense genes for amplified response. Moreover, SBT3.3 expression-sensitized plants for enhanced expression of the OXI1 kinase gene and activation of MAP kinases following pathogen attack, providing additional clues for the regulation of immune priming by SBT3.3. Conversely, in sbt3.3 mutant plants pathogen-mediated induction of SA-related defense gene expression is drastically reduced and activation of MAP kinases inhibited. Moreover, chromatin remodeling of defense-related genes normally associated with activation of an immune priming response appear inhibited in sbt3.3 plants, further indicating the importance of the extracellular SBT3.3 subtilase in the establishment of immune priming. Our results also point to an epigenetic control in the regulation of plant immunity, since SBT3.3 is up-regulated and priming activated when epigenetic control is impeded. SBT3.3 represents a new regulator of primed immunity. | es_ES |
dc.description.sponsorship | The Spanish MICINN (BFU2009-09771, EUI2009-04009 to PV) and Generalitat Valenciana (Prometeo2010/020 to PV) provided support for this work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS Pathogens | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Systemic acquired-resistance | es_ES |
dc.subject | Apoplastic oxidative burst | es_ES |
dc.subject | Pattern-triggered immunity | es_ES |
dc.subject | Beta-aminobutyric acid | es_ES |
dc.subject | Pseudomonas-syringae | es_ES |
dc.subject | Plant protease | es_ES |
dc.subject | Tomato plants | es_ES |
dc.subject | Defense | es_ES |
dc.subject | Gene | es_ES |
dc.subject | Expression | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | An Extracellular Subtilase Switch for Immune Priming in Arabidopsis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.ppat.1003445 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2009-09771/ES/Mecanismos De Control De La Resistencia%2FSusceptibilidad A Patogenos En Arabidopsis/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//EUI2009-04009/ES/IDENTIFICATION OF NEW PLANT SUSCEPTIBILITY FACTORS WHOSE MODIFICATION WOULD CONFER VIRUS RESISTANCE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F020/ES/Identificación de nuevos fármacos con potencia potencial uso biotecnológico en cultivos mediante un abordaje de genética química/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Ramirez Garcia, V.; López Sánchez, A.; Mauch-Mani, B.; Gil Morrió, MJ.; Vera Vera, P. (2013). An Extracellular Subtilase Switch for Immune Priming in Arabidopsis. PLoS Pathogens. 9(6):1003445-1003445. https://doi.org/10.1371/journal.ppat.1003445 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1371/journal.ppat.1003445 | es_ES |
dc.description.upvformatpinicio | 1003445 | es_ES |
dc.description.upvformatpfin | 1003445 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 259920 | |
dc.identifier.pmid | 23818851 | en_EN |
dc.identifier.pmcid | PMC3688555 | en_EN |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. doi:10.1038/nature05286 | es_ES |
dc.description.references | Moore, J. W., Loake, G. J., & Spoel, S. H. (2011). Transcription Dynamics in Plant Immunity. The Plant Cell, 23(8), 2809-2820. doi:10.1105/tpc.111.087346 | es_ES |
dc.description.references | Netea, M. G., Quintin, J., & van der Meer, J. W. M. (2011). Trained Immunity: A Memory for Innate Host Defense. Cell Host & Microbe, 9(5), 355-361. doi:10.1016/j.chom.2011.04.006 | es_ES |
dc.description.references | Durrant, W. E., & Dong, X. (2004). SYSTEMIC ACQUIRED RESISTANCE. Annual Review of Phytopathology, 42(1), 185-209. doi:10.1146/annurev.phyto.42.040803.140421 | es_ES |
dc.description.references | Van Wees, S. C., Van der Ent, S., & Pieterse, C. M. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11(4), 443-448. doi:10.1016/j.pbi.2008.05.005 | es_ES |
dc.description.references | KUĆ, J. (1987). Translocated Signals for Plant Immunization. Annals of the New York Academy of Sciences, 494(1 Third Colloqu), 221-223. doi:10.1111/j.1749-6632.1987.tb29529.x | es_ES |
dc.description.references | Zimmerli, L., Jakab, G., Metraux, J.-P., & Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta -aminobutyric acid. Proceedings of the National Academy of Sciences, 97(23), 12920-12925. doi:10.1073/pnas.230416897 | es_ES |
dc.description.references | Hayes, M. P., Enterline, J. C., Gerrard, T. L., & Zoon, K. C. (1991). Regulation of Interferon Production by Human Monocytes: Requirements for Priming for Lipopolysaccharide-Induced Production. Journal of Leukocyte Biology, 50(2), 176-181. doi:10.1002/jlb.50.2.176 | es_ES |
dc.description.references | Gifford, G. E., & Lohmann-Matthes, M.-L. (1987). Gamma Interferon Priming of Mouse and Human Macrophages for Induction of Tumor Necrosis Factor Production by Bacterial Lipopolysaccharide. JNCI: Journal of the National Cancer Institute, 78(1), 121-124. doi:10.1093/jnci/78.1.121 | es_ES |
dc.description.references | Koerner, T. J., Adams, D. O., & Hamilton, T. A. (1987). Regulation of tumor necrosis factor (TNF) expression: Interferon-γ enhances the accumulation of mRNA for TNF induced by lipopolysaccharide in murine peritoneal macrophages. Cellular Immunology, 109(2), 437-443. doi:10.1016/0008-8749(87)90326-1 | es_ES |
dc.description.references | Pham, L. N., Dionne, M. S., Shirasu-Hiza, M., & Schneider, D. S. (2007). A Specific Primed Immune Response in Drosophila Is Dependent on Phagocytes. PLoS Pathogens, 3(3), e26. doi:10.1371/journal.ppat.0030026 | es_ES |
dc.description.references | Beckers, G. J. M., Jaskiewicz, M., Liu, Y., Underwood, W. R., He, S. Y., Zhang, S., & Conrath, U. (2009). Mitogen-Activated Protein Kinases 3 and 6 Are Required for Full Priming of Stress Responses in Arabidopsis thaliana. The Plant Cell, 21(3), 944-953. doi:10.1105/tpc.108.062158 | es_ES |
dc.description.references | Kohler, A., Schwindling, S., & Conrath, U. (2002). Benzothiadiazole-Induced Priming for Potentiated Responses to Pathogen Infection, Wounding, and Infiltration of Water into Leaves Requires the NPR1/NIM1 Gene in Arabidopsis. Plant Physiology, 128(3), 1046-1056. doi:10.1104/pp.010744 | es_ES |
dc.description.references | Dempsey, D. A., & Klessig, D. F. (2012). SOS – too many signals for systemic acquired resistance? Trends in Plant Science, 17(9), 538-545. doi:10.1016/j.tplants.2012.05.011 | es_ES |
dc.description.references | Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J., & Greenberg, J. T. (2009). Priming in Systemic Plant Immunity. Science, 324(5923), 89-91. doi:10.1126/science.1170025 | es_ES |
dc.description.references | Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., & Hunt, M. D. (1996). Systemic Acquired Resistance. The Plant Cell, 1809-1819. doi:10.1105/tpc.8.10.1809 | es_ES |
dc.description.references | Zimmerli, L., Métraux, J.-P., & Mauch-Mani, B. (2001). β-Aminobutyric Acid-Induced Protection of Arabidopsis against the Necrotrophic Fungus Botrytis cinerea. Plant Physiology, 126(2), 517-523. doi:10.1104/pp.126.2.517 | es_ES |
dc.description.references | Conrath, U., Beckers, G. J. M., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., … Mauch-Mani, B. (2006). Priming: Getting Ready for Battle. Molecular Plant-Microbe Interactions, 19(10), 1062-1071. doi:10.1094/mpmi-19-1062 | es_ES |
dc.description.references | Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12(2), 89-100. doi:10.1038/nri3141 | es_ES |
dc.description.references | Jaskiewicz, M., Conrath, U., & Peterhänsel, C. (2010). Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO reports, 12(1), 50-55. doi:10.1038/embor.2010.186 | es_ES |
dc.description.references | Mosher, R. A., Durrant, W. E., Wang, D., Song, J., & Dong, X. (2006). A Comprehensive Structure–Function Analysis of Arabidopsis SNI1 Defines Essential Regions and Transcriptional Repressor Activity. The Plant Cell, 18(7), 1750-1765. doi:10.1105/tpc.105.039677 | es_ES |
dc.description.references | Law, J. A., & Jacobsen, S. E. (2009). MOLECULAR BIOLOGY: Dynamic DNA Methylation. Science, 323(5921), 1568-1569. doi:10.1126/science.1172782 | es_ES |
dc.description.references | López, A., Ramírez, V., García-Andrade, J., Flors, V., & Vera, P. (2011). The RNA Silencing Enzyme RNA Polymerase V Is Required for Plant Immunity. PLoS Genetics, 7(12), e1002434. doi:10.1371/journal.pgen.1002434 | es_ES |
dc.description.references | Luna, E., Bruce, T. J. A., Roberts, M. R., Flors, V., & Ton, J. (2011). Next-Generation Systemic Acquired Resistance. Plant Physiology, 158(2), 844-853. doi:10.1104/pp.111.187468 | es_ES |
dc.description.references | Slaughter, A., Daniel, X., Flors, V., Luna, E., Hohn, B., & Mauch-Mani, B. (2011). Descendants of Primed Arabidopsis Plants Exhibit Resistance to Biotic Stress. Plant Physiology, 158(2), 835-843. doi:10.1104/pp.111.191593 | es_ES |
dc.description.references | Gil, M. J., Coego, A., Mauch-Mani, B., Jordá, L., & Vera, P. (2005). The Arabidopsis csb3 mutant reveals a regulatory link between salicylic acid-mediated disease resistance and the methyl-erythritol 4-phosphate pathway. The Plant Journal, 44(1), 155-166. doi:10.1111/j.1365-313x.2005.02517.x | es_ES |
dc.description.references | Jordá, L., & Vera, P. (2000). Local and Systemic Induction of Two Defense-Related Subtilisin-Like Protease Promoters in Transgenic Arabidopsis Plants. Luciferin Induction of PR Gene Expression. Plant Physiology, 124(3), 1049-1058. doi:10.1104/pp.124.3.1049 | es_ES |
dc.description.references | Rautengarten, C., Steinhauser, D., Büssis, D., Stintzi, A., Schaller, A., Kopka, J., & Altmann, T. (2005). Inferring Hypotheses on Functional Relationships of Genes: Analysis of the Arabidopsis thaliana Subtilase Gene Family. PLoS Computational Biology, 1(4), e40. doi:10.1371/journal.pcbi.0010040 | es_ES |
dc.description.references | Jordá, L., Coego, A., Conejero, V., & Vera, P. (1999). A Genomic Cluster Containing Four Differentially Regulated Subtilisin-like Processing Protease Genes Is in Tomato Plants. Journal of Biological Chemistry, 274(4), 2360-2365. doi:10.1074/jbc.274.4.2360 | es_ES |
dc.description.references | Tornero, P., Conejero, V., & Vera, P. (1996). Primary structure and expression of a pathogen-induced protease (PR-P69) in tomato plants: Similarity of functional domains to subtilisin-like endoproteases. Proceedings of the National Academy of Sciences, 93(13), 6332-6337. doi:10.1073/pnas.93.13.6332 | es_ES |
dc.description.references | Dong, X., Mindrinos, M., Davis, K. R., & Ausubel, F. M. (1991). Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. The Plant Cell, 3(1), 61-72. doi:10.1105/tpc.3.1.61 | es_ES |
dc.description.references | Bolwell GP, Daudi A (2009) Reactive oxygen species in plant-pathogen interactions. <italic>In</italic> LA del Rio, A Puppo, eds, Reactive Oxygen Species in Plant Signaling. Springer-Verlag, Berlin, pp 113–133. | es_ES |
dc.description.references | Rentel, M. C., Lecourieux, D., Ouaked, F., Usher, S. L., Petersen, L., Okamoto, H., … Knight, M. R. (2004). OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature, 427(6977), 858-861. doi:10.1038/nature02353 | es_ES |
dc.description.references | Schaller, A., Stintzi, A., & Graff, L. (2011). Subtilases - versatile tools for protein turnover, plant development, and interactions with the environment. Physiologia Plantarum, 145(1), 52-66. doi:10.1111/j.1399-3054.2011.01529.x | es_ES |
dc.description.references | Takeda, N., Sato, S., Asamizu, E., Tabata, S., & Parniske, M. (2009). Apoplastic plant subtilases support arbuscular mycorrhiza development inLotus japonicus. The Plant Journal, 58(5), 766-777. doi:10.1111/j.1365-313x.2009.03824.x | es_ES |
dc.description.references | Chichkova, N. V., Shaw, J., Galiullina, R. A., Drury, G. E., Tuzhikov, A. I., Kim, S. H., … Taliansky, M. (2010). Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. The EMBO Journal, 29(6), 1149-1161. doi:10.1038/emboj.2010.1 | es_ES |
dc.description.references | Bykova, N. V., Rampitsch, C., Krokhin, O., Standing, K. G., & Ens, W. (2006). Determination and Characterization of Site-Specific N-Glycosylation Using MALDI-Qq-TOF Tandem Mass Spectrometry: Case Study with a Plant Protease. Analytical Chemistry, 78(4), 1093-1103. doi:10.1021/ac0512711 | es_ES |
dc.description.references | Cedzich, A., Huttenlocher, F., Kuhn, B. M., Pfannstiel, J., Gabler, L., Stintzi, A., & Schaller, A. (2009). The Protease-associated Domain and C-terminal Extension Are Required for Zymogen Processing, Sorting within the Secretory Pathway, and Activity of Tomato Subtilase 3 (SlSBT3). Journal of Biological Chemistry, 284(21), 14068-14078. doi:10.1074/jbc.m900370200 | es_ES |
dc.description.references | Spoel, S. H., Koornneef, A., Claessens, S. M. C., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., … Pieterse, C. M. J. (2003). NPR1 Modulates Cross-Talk between Salicylate- and Jasmonate-Dependent Defense Pathways through a Novel Function in the Cytosol. The Plant Cell, 15(3), 760-770. doi:10.1105/tpc.009159 | es_ES |
dc.description.references | Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W.-L., Gomez-Gomez, L., … Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415(6875), 977-983. doi:10.1038/415977a | es_ES |
dc.description.references | Bethke, G., Unthan, T., Uhrig, J. F., Poschl, Y., Gust, A. A., Scheel, D., & Lee, J. (2009). Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proceedings of the National Academy of Sciences, 106(19), 8067-8072. doi:10.1073/pnas.0810206106 | es_ES |
dc.description.references | Bethke, G., Pecher, P., Eschen-Lippold, L., Tsuda, K., Katagiri, F., Glazebrook, J., … Lee, J. (2012). Activation of the Arabidopsis thaliana Mitogen-Activated Protein Kinase MPK11 by the Flagellin-Derived Elicitor Peptide, flg22. Molecular Plant-Microbe Interactions, 25(4), 471-480. doi:10.1094/mpmi-11-11-0281 | es_ES |
dc.description.references | Rushton, P. J., Somssich, I. E., Ringler, P., & Shen, Q. J. (2010). WRKY transcription factors. Trends in Plant Science, 15(5), 247-258. doi:10.1016/j.tplants.2010.02.006 | es_ES |
dc.description.references | Dong, J., Chen, C., & Chen, Z. (2003). Plant Molecular Biology, 51(1), 21-37. doi:10.1023/a:1020780022549 | es_ES |
dc.description.references | Zhang, H., Deng, X., Miki, D., Cutler, S., La, H., Hou, Y.-J., … Zhu, J.-K. (2012). Sulfamethazine Suppresses Epigenetic Silencing in Arabidopsis by Impairing Folate Synthesis. The Plant Cell, 24(3), 1230-1241. doi:10.1105/tpc.112.096149 | es_ES |
dc.description.references | Coego, A., Ramirez, V., Ellul, P., Mayda, E., & Vera, P. (2005). The H2O2-regulated Ep5C gene encodes a peroxidase required for bacterial speck susceptibility in tomato. The Plant Journal, 42(2), 283-293. doi:10.1111/j.1365-313x.2005.02372.x | es_ES |
dc.description.references | Daudi, A., Cheng, Z., O’Brien, J. A., Mammarella, N., Khan, S., Ausubel, F. M., & Bolwell, G. P. (2012). The Apoplastic Oxidative Burst Peroxidase in Arabidopsis Is a Major Component of Pattern-Triggered Immunity. The Plant Cell, 24(1), 275-287. doi:10.1105/tpc.111.093039 | es_ES |
dc.description.references | O’Brien, J. A., Daudi, A., Finch, P., Butt, V. S., Whitelegge, J. P., Souda, P., … Bolwell, G. P. (2012). A Peroxidase-Dependent Apoplastic Oxidative Burst in Cultured Arabidopsis Cells Functions in MAMP-Elicited Defense. Plant Physiology, 158(4), 2013-2027. doi:10.1104/pp.111.190140 | es_ES |
dc.description.references | OSSOVSKAYA, V. S., & BUNNETT, N. W. (2004). Protease-Activated Receptors: Contribution to Physiology and Disease. Physiological Reviews, 84(2), 579-621. doi:10.1152/physrev.00028.2003 | es_ES |
dc.description.references | Buchon, N., Poidevin, M., Kwon, H.-M., Guillou, A., Sottas, V., Lee, B.-L., & Lemaitre, B. (2009). A single modular serine protease integrates signals from pattern-recognition receptors upstream of the Drosophila Toll pathway. Proceedings of the National Academy of Sciences, 106(30), 12442-12447. doi:10.1073/pnas.0901924106 | es_ES |
dc.description.references | Brunn, G. J., Bungum, M. K., Johnson, G. B., & Platt, J. L. (2005). Conditional signaling by Toll-like receptor 4. The FASEB Journal, 19(7), 872-874. doi:10.1096/fj.04-3211fje | es_ES |
dc.description.references | De Zoete, M. R., Bouwman, L. I., Keestra, A. M., & van Putten, J. P. M. (2011). Cleavage and activation of a Toll-like receptor by microbial proteases. Proceedings of the National Academy of Sciences, 108(12), 4968-4973. doi:10.1073/pnas.1018135108 | es_ES |
dc.description.references | Singh, P., Kuo, Y.-C., Mishra, S., Tsai, C.-H., Chien, C.-C., Chen, C.-W., … Zimmerli, L. (2012). The Lectin Receptor Kinase-VI.2 Is Required for Priming and Positively Regulates Arabidopsis Pattern-Triggered Immunity. The Plant Cell, 24(3), 1256-1270. doi:10.1105/tpc.112.095778 | es_ES |
dc.description.references | Agorio, A., & Vera, P. (2007). ARGONAUTE4 Is Required for Resistance to Pseudomonas syringae in Arabidopsis. The Plant Cell, 19(11), 3778-3790. doi:10.1105/tpc.107.054494 | es_ES |
dc.description.references | Haring, M., Offermann, S., Danker, T., Horst, I., Peterhansel, C., & Stam, M. (2007). Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods, 3(1), 11. doi:10.1186/1746-4811-3-11 | es_ES |