Mostrar el registro sencillo del ítem
dc.contributor.author | Karapınar, Erdal | es_ES |
dc.contributor.author | Romaguera Bonilla, Salvador | es_ES |
dc.contributor.author | Taș, Kenan | es_ES |
dc.date.accessioned | 2014-09-09T10:51:22Z | |
dc.date.available | 2014-09-09T10:51:22Z | |
dc.date.issued | 2013-03 | |
dc.identifier.issn | 1895-1074 | |
dc.identifier.uri | http://hdl.handle.net/10251/39514 | |
dc.description.abstract | We prove a fixed point theorem for cyclic orbital generalized contractions on complete metric spaces from which we deduce, among other results, generalized cyclic versions of the celebrated Boyd and Wong fixed point theorem, and Matkowski fixed point theorem. This is done by adapting to the cyclic framework a condition of Meir–Keeler type discussed in [Jachymski J., Equivalent conditions and the Meir–Keeler type theorems, J. Math. Anal. Appl., 1995, 194(1), 293–303]. Our results generalize some theorems of Kirk, Srinavasan and Veeramani, and of Karpagam and Agrawal | es_ES |
dc.description.sponsorship | The authors are very grateful to the referee since his/her corrections and suggestions have fairly improved the first version of the paper. Salvador Romaguera also acknowledges the support of the Spanish Ministry of Science and Technology, grant MTM2009-12872-C02-01. | en_EN |
dc.language | Español | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Central European Journal of Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fixed point | es_ES |
dc.subject | Cyclic generalized contraction | es_ES |
dc.subject | Complete metric space | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Fixed points for cyclic orbital generalized contractionson complete metric spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.2478/s11533-012-0145-0 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2009-12872-C02-01/ES/Construccion De Casi-Metricas Fuzzy, De Distancias De Complejidad Y De Dominios Cuantitativos. Aplicaciones/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.description.bibliographicCitation | Karapınar, E.; Romaguera Bonilla, S.; Taș, K. (2013). Fixed points for cyclic orbital generalized contractionson complete metric spaces. Central European Journal of Mathematics. 11(3):552-560. https://doi.org/10.2478/s11533-012-0145-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.2478/s11533-012-0145-0 | es_ES |
dc.description.upvformatpinicio | 552 | es_ES |
dc.description.upvformatpfin | 560 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 246048 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Al-Thagafi, M. A., & Shahzad, N. (2009). Convergence and existence results for best proximity points. Nonlinear Analysis: Theory, Methods & Applications, 70(10), 3665-3671. doi:10.1016/j.na.2008.07.022 | es_ES |
dc.description.references | Meir, A., & Keeler, E. (1969). A theorem on contraction mappings. Journal of Mathematical Analysis and Applications, 28(2), 326-329. doi:10.1016/0022-247x(69)90031-6 | es_ES |
dc.description.references | Boyd, D. W., & Wong, J. S. W. (1969). On nonlinear contractions. Proceedings of the American Mathematical Society, 20(2), 458-458. doi:10.1090/s0002-9939-1969-0239559-9 | es_ES |
dc.description.references | Di Bari, C., Suzuki, T., & Vetro, C. (2008). Best proximity points for cyclic Meir–Keeler contractions. Nonlinear Analysis: Theory, Methods & Applications, 69(11), 3790-3794. doi:10.1016/j.na.2007.10.014 | es_ES |
dc.description.references | Jachymski, J. (1995). Equivalent Conditions and the Meir-Keeler Type Theorems. Journal of Mathematical Analysis and Applications, 194(1), 293-303. doi:10.1006/jmaa.1995.1299 | es_ES |
dc.description.references | Jachymski, J. R. (1997). Proceedings of the American Mathematical Society, 125(08), 2327-2336. doi:10.1090/s0002-9939-97-03853-7 | es_ES |
dc.description.references | Anuradha, J., & Veeramani, P. (2009). Proximal pointwise contraction. Topology and its Applications, 156(18), 2942-2948. doi:10.1016/j.topol.2009.01.017 | es_ES |
dc.description.references | Păcurar, M., & Rus, I. A. (2010). Fixed point theory for cyclic -contractions. Nonlinear Analysis: Theory, Methods & Applications, 72(3-4), 1181-1187. doi:10.1016/j.na.2009.08.002 | es_ES |
dc.description.references | Eldred, A. A., & Veeramani, P. (2006). Existence and convergence of best proximity points. Journal of Mathematical Analysis and Applications, 323(2), 1001-1006. doi:10.1016/j.jmaa.2005.10.081 | es_ES |
dc.description.references | Karpagam, S., & Agrawal, S. (2011). Best proximity point theorems for cyclic orbital Meir–Keeler contraction maps. Nonlinear Analysis: Theory, Methods & Applications, 74(4), 1040-1046. doi:10.1016/j.na.2010.07.026 | es_ES |
dc.description.references | Karapınar, E. (2011). Fixed point theory for cyclic weak <mml:math altimg=«si1.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mi>ϕ</mml:mi></mml:math>-contraction. Applied Mathematics Letters, 24(6), 822-825. doi:10.1016/j.aml.2010.12.016 | es_ES |