- -

Fixed points for cyclic orbital generalized contractionson complete metric spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed points for cyclic orbital generalized contractionson complete metric spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Karapınar, Erdal es_ES
dc.contributor.author Romaguera Bonilla, Salvador es_ES
dc.contributor.author Taș, Kenan es_ES
dc.date.accessioned 2014-09-09T10:51:22Z
dc.date.available 2014-09-09T10:51:22Z
dc.date.issued 2013-03
dc.identifier.issn 1895-1074
dc.identifier.uri http://hdl.handle.net/10251/39514
dc.description.abstract We prove a fixed point theorem for cyclic orbital generalized contractions on complete metric spaces from which we deduce, among other results, generalized cyclic versions of the celebrated Boyd and Wong fixed point theorem, and Matkowski fixed point theorem. This is done by adapting to the cyclic framework a condition of Meir–Keeler type discussed in [Jachymski J., Equivalent conditions and the Meir–Keeler type theorems, J. Math. Anal. Appl., 1995, 194(1), 293–303]. Our results generalize some theorems of Kirk, Srinavasan and Veeramani, and of Karpagam and Agrawal es_ES
dc.description.sponsorship The authors are very grateful to the referee since his/her corrections and suggestions have fairly improved the first version of the paper. Salvador Romaguera also acknowledges the support of the Spanish Ministry of Science and Technology, grant MTM2009-12872-C02-01. en_EN
dc.language Español es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Central European Journal of Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fixed point es_ES
dc.subject Cyclic generalized contraction es_ES
dc.subject Complete metric space es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Fixed points for cyclic orbital generalized contractionson complete metric spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2478/s11533-012-0145-0
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2009-12872-C02-01/ES/Construccion De Casi-Metricas Fuzzy, De Distancias De Complejidad Y De Dominios Cuantitativos. Aplicaciones/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Karapınar, E.; Romaguera Bonilla, S.; Taș, K. (2013). Fixed points for cyclic orbital generalized contractionson complete metric spaces. Central European Journal of Mathematics. 11(3):552-560. https://doi.org/10.2478/s11533-012-0145-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.2478/s11533-012-0145-0 es_ES
dc.description.upvformatpinicio 552 es_ES
dc.description.upvformatpfin 560 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 246048
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Al-Thagafi, M. A., & Shahzad, N. (2009). Convergence and existence results for best proximity points. Nonlinear Analysis: Theory, Methods & Applications, 70(10), 3665-3671. doi:10.1016/j.na.2008.07.022 es_ES
dc.description.references Meir, A., & Keeler, E. (1969). A theorem on contraction mappings. Journal of Mathematical Analysis and Applications, 28(2), 326-329. doi:10.1016/0022-247x(69)90031-6 es_ES
dc.description.references Boyd, D. W., & Wong, J. S. W. (1969). On nonlinear contractions. Proceedings of the American Mathematical Society, 20(2), 458-458. doi:10.1090/s0002-9939-1969-0239559-9 es_ES
dc.description.references Di Bari, C., Suzuki, T., & Vetro, C. (2008). Best proximity points for cyclic Meir–Keeler contractions. Nonlinear Analysis: Theory, Methods & Applications, 69(11), 3790-3794. doi:10.1016/j.na.2007.10.014 es_ES
dc.description.references Jachymski, J. (1995). Equivalent Conditions and the Meir-Keeler Type Theorems. Journal of Mathematical Analysis and Applications, 194(1), 293-303. doi:10.1006/jmaa.1995.1299 es_ES
dc.description.references Jachymski, J. R. (1997). Proceedings of the American Mathematical Society, 125(08), 2327-2336. doi:10.1090/s0002-9939-97-03853-7 es_ES
dc.description.references Anuradha, J., & Veeramani, P. (2009). Proximal pointwise contraction. Topology and its Applications, 156(18), 2942-2948. doi:10.1016/j.topol.2009.01.017 es_ES
dc.description.references Păcurar, M., & Rus, I. A. (2010). Fixed point theory for cyclic -contractions. Nonlinear Analysis: Theory, Methods & Applications, 72(3-4), 1181-1187. doi:10.1016/j.na.2009.08.002 es_ES
dc.description.references Eldred, A. A., & Veeramani, P. (2006). Existence and convergence of best proximity points. Journal of Mathematical Analysis and Applications, 323(2), 1001-1006. doi:10.1016/j.jmaa.2005.10.081 es_ES
dc.description.references Karpagam, S., & Agrawal, S. (2011). Best proximity point theorems for cyclic orbital Meir–Keeler contraction maps. Nonlinear Analysis: Theory, Methods & Applications, 74(4), 1040-1046. doi:10.1016/j.na.2010.07.026 es_ES
dc.description.references Karapınar, E. (2011). Fixed point theory for cyclic weak <mml:math altimg=«si1.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mi>ϕ</mml:mi></mml:math>-contraction. Applied Mathematics Letters, 24(6), 822-825. doi:10.1016/j.aml.2010.12.016 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem