- -

Fixed points for cyclic orbital generalized contractionson complete metric spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed points for cyclic orbital generalized contractionson complete metric spaces

Mostrar el registro completo del ítem

Karapınar, E.; Romaguera Bonilla, S.; Taș, K. (2013). Fixed points for cyclic orbital generalized contractionson complete metric spaces. Central European Journal of Mathematics. 11(3):552-560. https://doi.org/10.2478/s11533-012-0145-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/39514

Ficheros en el ítem

Metadatos del ítem

Título: Fixed points for cyclic orbital generalized contractionson complete metric spaces
Autor: Karapınar, Erdal Romaguera Bonilla, Salvador Taș, Kenan
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Fecha difusión:
Resumen:
We prove a fixed point theorem for cyclic orbital generalized contractions on complete metric spaces from which we deduce, among other results, generalized cyclic versions of the celebrated Boyd and Wong fixed point ...[+]
Palabras clave: Fixed point , Cyclic generalized contraction , Complete metric space
Derechos de uso: Reserva de todos los derechos
Fuente:
Central European Journal of Mathematics. (issn: 1895-1074 )
DOI: 10.2478/s11533-012-0145-0
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.2478/s11533-012-0145-0
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MTM2009-12872-C02-01/ES/Construccion De Casi-Metricas Fuzzy, De Distancias De Complejidad Y De Dominios Cuantitativos. Aplicaciones/
Agradecimientos:
The authors are very grateful to the referee since his/her corrections and suggestions have fairly improved the first version of the paper. Salvador Romaguera also acknowledges the support of the Spanish Ministry of Science ...[+]
Tipo: Artículo

References

Al-Thagafi, M. A., & Shahzad, N. (2009). Convergence and existence results for best proximity points. Nonlinear Analysis: Theory, Methods & Applications, 70(10), 3665-3671. doi:10.1016/j.na.2008.07.022

Meir, A., & Keeler, E. (1969). A theorem on contraction mappings. Journal of Mathematical Analysis and Applications, 28(2), 326-329. doi:10.1016/0022-247x(69)90031-6

Boyd, D. W., & Wong, J. S. W. (1969). On nonlinear contractions. Proceedings of the American Mathematical Society, 20(2), 458-458. doi:10.1090/s0002-9939-1969-0239559-9 [+]
Al-Thagafi, M. A., & Shahzad, N. (2009). Convergence and existence results for best proximity points. Nonlinear Analysis: Theory, Methods & Applications, 70(10), 3665-3671. doi:10.1016/j.na.2008.07.022

Meir, A., & Keeler, E. (1969). A theorem on contraction mappings. Journal of Mathematical Analysis and Applications, 28(2), 326-329. doi:10.1016/0022-247x(69)90031-6

Boyd, D. W., & Wong, J. S. W. (1969). On nonlinear contractions. Proceedings of the American Mathematical Society, 20(2), 458-458. doi:10.1090/s0002-9939-1969-0239559-9

Di Bari, C., Suzuki, T., & Vetro, C. (2008). Best proximity points for cyclic Meir–Keeler contractions. Nonlinear Analysis: Theory, Methods & Applications, 69(11), 3790-3794. doi:10.1016/j.na.2007.10.014

Jachymski, J. (1995). Equivalent Conditions and the Meir-Keeler Type Theorems. Journal of Mathematical Analysis and Applications, 194(1), 293-303. doi:10.1006/jmaa.1995.1299

Jachymski, J. R. (1997). Proceedings of the American Mathematical Society, 125(08), 2327-2336. doi:10.1090/s0002-9939-97-03853-7

Anuradha, J., & Veeramani, P. (2009). Proximal pointwise contraction. Topology and its Applications, 156(18), 2942-2948. doi:10.1016/j.topol.2009.01.017

Păcurar, M., & Rus, I. A. (2010). Fixed point theory for cyclic -contractions. Nonlinear Analysis: Theory, Methods & Applications, 72(3-4), 1181-1187. doi:10.1016/j.na.2009.08.002

Eldred, A. A., & Veeramani, P. (2006). Existence and convergence of best proximity points. Journal of Mathematical Analysis and Applications, 323(2), 1001-1006. doi:10.1016/j.jmaa.2005.10.081

Karpagam, S., & Agrawal, S. (2011). Best proximity point theorems for cyclic orbital Meir–Keeler contraction maps. Nonlinear Analysis: Theory, Methods & Applications, 74(4), 1040-1046. doi:10.1016/j.na.2010.07.026

Karapınar, E. (2011). Fixed point theory for cyclic weak <mml:math altimg=«si1.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mi>ϕ</mml:mi></mml:math>-contraction. Applied Mathematics Letters, 24(6), 822-825. doi:10.1016/j.aml.2010.12.016

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem