Van Rijswijk, K., Bersee, H. E. N., Jager, W. F., & Picken, S. J. (2006). Optimisation of anionic polyamide-6 for vacuum infusion of thermoplastic composites: choice of activator and initiator. Composites Part A: Applied Science and Manufacturing, 37(6), 949-956. doi:10.1016/j.compositesa.2005.01.023
Van Rijswijk, K., van Geenen, A. A., & Bersee, H. E. N. (2009). Textile fiber-reinforced anionic polyamide-6 composites. Part II: Investigation on interfacial bond formation by short beam shear test. Composites Part A: Applied Science and Manufacturing, 40(8), 1033-1043. doi:10.1016/j.compositesa.2009.02.018
Van Rijswijk, K., Lindstedt, S., Vlasveld, D. P. N., Bersee, H. E. N., & Beukers, A. (2006). Reactive processing of anionic polyamide-6 for application in fiber composites: A comparitive study with melt processed polyamides and nanocomposites. Polymer Testing, 25(7), 873-887. doi:10.1016/j.polymertesting.2006.05.006
[+]
Van Rijswijk, K., Bersee, H. E. N., Jager, W. F., & Picken, S. J. (2006). Optimisation of anionic polyamide-6 for vacuum infusion of thermoplastic composites: choice of activator and initiator. Composites Part A: Applied Science and Manufacturing, 37(6), 949-956. doi:10.1016/j.compositesa.2005.01.023
Van Rijswijk, K., van Geenen, A. A., & Bersee, H. E. N. (2009). Textile fiber-reinforced anionic polyamide-6 composites. Part II: Investigation on interfacial bond formation by short beam shear test. Composites Part A: Applied Science and Manufacturing, 40(8), 1033-1043. doi:10.1016/j.compositesa.2009.02.018
Van Rijswijk, K., Lindstedt, S., Vlasveld, D. P. N., Bersee, H. E. N., & Beukers, A. (2006). Reactive processing of anionic polyamide-6 for application in fiber composites: A comparitive study with melt processed polyamides and nanocomposites. Polymer Testing, 25(7), 873-887. doi:10.1016/j.polymertesting.2006.05.006
Van Rijswijk, K., & Bersee, H. E. N. (2007). Reactive processing of textile fiber-reinforced thermoplastic composites – An overview. Composites Part A: Applied Science and Manufacturing, 38(3), 666-681. doi:10.1016/j.compositesa.2006.05.007
Pillay, S., Vaidya, U. K., & Janowski, G. M. (2005). Liquid Molding of Carbon Fabric-reinforced Nylon Matrix Composite Laminates. Journal of Thermoplastic Composite Materials, 18(6), 509-527. doi:10.1177/0892705705054412
Garcı́a, J. A., Gascón, L., & Chinesta, F. (2003). A fixed mesh numerical method for modelling the flow in liquid composites moulding processes using a volume of fluid technique. Computer Methods in Applied Mechanics and Engineering, 192(7-8), 877-893. doi:10.1016/s0045-7825(02)00604-7
Davé, R. S., & Loos, A. C. (Eds.). (2000). Processing of Composites. doi:10.3139/9783446401778
Woo Il Lee, Loos, A. C., & Springer, G. S. (1982). Heat of Reaction, Degree of Cure, and Viscosity of Hercules 3501-6 Resin. Journal of Composite Materials, 16(6), 510-520. doi:10.1177/002199838201600605
Gupta, A., Kelly, P. A., Bickerton, S., & Walbran, W. A. (2012). Simulating the effect of temperature elevation on clamping force requirements during rigid-tool Liquid Composite Moulding processes. Composites Part A: Applied Science and Manufacturing, 43(12), 2221-2229. doi:10.1016/j.compositesa.2012.08.003
Kabo, G. J., Kozyro, A. A., Krouk, V. S., Sevruk, V. M., Yursha, I. A., Simirsky, V. V., & Gogolinsky, V. I. (1992). Thermodynamic properties of 6-aminohexanoic lactam (ɛ-caprolactam). The Journal of Chemical Thermodynamics, 24(1), 1-13. doi:10.1016/s0021-9614(05)80249-6
Marx, P., Smith, C. W., Worthington, A. E., & Dole, M. (1955). Specific Heat of Synthetic High Polymers. IV. Polycaprolactam. The Journal of Physical Chemistry, 59(10), 1015-1019. doi:10.1021/j150532a005
Dole, M., & Wunderlich, B. (1959). Die Makromolekulare Chemie, 34(1), 29-49. doi:10.1002/macp.1959.020340102
Kim, K. J., Kim, Y. Y., Yoon, B. S., & Yoon, K. J. (1995). Mechanism and kinetics of adiabatic anionic polymerization of ε-caprolactam in the presence of various activators. Journal of Applied Polymer Science, 57(11), 1347-1358. doi:10.1002/app.1995.070571111
Malkin, A. Y., Ivanova, S. L., Frolov, V. G., Ivanova, A. N., & Andrianova, Z. S. (1982). Kinetics of anionic polymerization of lactams. (Solution of non-isothermal kinetic problems by the inverse method). Polymer, 23(12), 1791-1800. doi:10.1016/0032-3861(82)90124-0
Camargo, R. E., Gonzalez, V. M., Macosko, C. W., & Tirrell, M. (1983). Bulk Polymerization Kinetics by the Adiabatic Reactor Method. Rubber Chemistry and Technology, 56(4), 774-783. doi:10.5254/1.3538154
Teuwen, J. J. E., van Geenen, A. A., & Bersee, H. E. N. (2012). Novel Reaction Kinetic Model for Anionic Polyamide-6. Macromolecular Materials and Engineering, 298(2), 163-173. doi:10.1002/mame.201100457
RUIZ, E., ACHIM, V., SOUKANE, S., TROCHU, F., & BREARD, J. (2006). Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites. Composites Science and Technology, 66(3-4), 475-486. doi:10.1016/j.compscitech.2005.06.013
García, J. A., Gascón, L., Chinesta, F., Ruiz, E., & Trochu, F. (2010). An efficient solver of the saturation equation in liquid composite molding processes. International Journal of Material Forming, 3(S2), 1295-1302. doi:10.1007/s12289-010-0681-8
Chui, W. K., Glimm, J., Tangerman, F. M., Jardine, A. P., Madsen, J. S., Donnellan, T. M., & Leek, R. (1997). Case Study from Industry:Process Modeling in Resin Transfer Molding as a Method to Enhance Product Quality. SIAM Review, 39(4), 714-727. doi:10.1137/s0036144596308546
Gascón LL, García JA, Ruiz E, Modelling and prediction of saturation in liquid composite molding, submitted to publication, 2013[Please update Ref 21.].
[-]