Mostrar el registro sencillo del ítem
dc.contributor.author | García Manrique, Juan Antonio | es_ES |
dc.contributor.author | Hoto, Rene | es_ES |
dc.contributor.author | Gascón Martínez, María Llanos | es_ES |
dc.contributor.author | Andrés de la Esperanza, Francisco Javier | es_ES |
dc.date.accessioned | 2014-09-10T07:09:04Z | |
dc.date.available | 2014-09-10T07:09:04Z | |
dc.date.issued | 2014-04 | |
dc.identifier.issn | 0892-7057 | |
dc.identifier.uri | http://hdl.handle.net/10251/39544 | |
dc.description.abstract | In this work, a structural reactive injection moulding process using reactive anionic polyamide 6 (APA-6) is studied. Semi-empirical equations for the prediction of the APA-6 reaction kinetics and an advection equation for void transport are used in the numerical scheme. A complex numerical simulation of reactive injection of ε-caprolactam was developed for a three-dimensional industrial part. The validity of the approach is demonstrated for determining an effective injection strategy, including the position of vents and gates and the most effective parameter values for minimum mould filling time without the formation of voids. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research work is supported by the Spanish Ministry of Science and Innovation, project DPI2010-20333 and the Generalitat Valenciana through programme PROMETEO/2009/063. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications (UK and US) | es_ES |
dc.relation.ispartof | Journal of Thermoplastic Composite Materials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | LCM | es_ES |
dc.subject | Void content | es_ES |
dc.subject | Saturation | es_ES |
dc.subject | Anionic PA-6 | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A numerical simulation of woven/anionic polyamide 6 composite part manufacturing using structural reactive injection moulding process | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/0892705714530746 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2010-20333/ES/DESARROLLO SOSTENIBLE Y MODELADO DE COMPOSITES TERMOPLASTICOS (GREEN COMPOSITE)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F063/ES/Investigaciones en diseño para la fabricación y producción automatizada/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | García Manrique, JA.; Hoto, R.; Gascón Martínez, ML.; Andrés De La Esperanza, FJ. (2014). A numerical simulation of woven/anionic polyamide 6 composite part manufacturing using structural reactive injection moulding process. Journal of Thermoplastic Composite Materials. 1-15. https://doi.org/10.1177/0892705714530746 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://jtc.sagepub.com/content/early/2014/04/11/0892705714530746 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 265657 | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Van Rijswijk, K., Bersee, H. E. N., Jager, W. F., & Picken, S. J. (2006). Optimisation of anionic polyamide-6 for vacuum infusion of thermoplastic composites: choice of activator and initiator. Composites Part A: Applied Science and Manufacturing, 37(6), 949-956. doi:10.1016/j.compositesa.2005.01.023 | es_ES |
dc.description.references | Van Rijswijk, K., van Geenen, A. A., & Bersee, H. E. N. (2009). Textile fiber-reinforced anionic polyamide-6 composites. Part II: Investigation on interfacial bond formation by short beam shear test. Composites Part A: Applied Science and Manufacturing, 40(8), 1033-1043. doi:10.1016/j.compositesa.2009.02.018 | es_ES |
dc.description.references | Van Rijswijk, K., Lindstedt, S., Vlasveld, D. P. N., Bersee, H. E. N., & Beukers, A. (2006). Reactive processing of anionic polyamide-6 for application in fiber composites: A comparitive study with melt processed polyamides and nanocomposites. Polymer Testing, 25(7), 873-887. doi:10.1016/j.polymertesting.2006.05.006 | es_ES |
dc.description.references | Van Rijswijk, K., & Bersee, H. E. N. (2007). Reactive processing of textile fiber-reinforced thermoplastic composites – An overview. Composites Part A: Applied Science and Manufacturing, 38(3), 666-681. doi:10.1016/j.compositesa.2006.05.007 | es_ES |
dc.description.references | Pillay, S., Vaidya, U. K., & Janowski, G. M. (2005). Liquid Molding of Carbon Fabric-reinforced Nylon Matrix Composite Laminates. Journal of Thermoplastic Composite Materials, 18(6), 509-527. doi:10.1177/0892705705054412 | es_ES |
dc.description.references | Garcı́a, J. A., Gascón, L., & Chinesta, F. (2003). A fixed mesh numerical method for modelling the flow in liquid composites moulding processes using a volume of fluid technique. Computer Methods in Applied Mechanics and Engineering, 192(7-8), 877-893. doi:10.1016/s0045-7825(02)00604-7 | es_ES |
dc.description.references | Davé, R. S., & Loos, A. C. (Eds.). (2000). Processing of Composites. doi:10.3139/9783446401778 | es_ES |
dc.description.references | Woo Il Lee, Loos, A. C., & Springer, G. S. (1982). Heat of Reaction, Degree of Cure, and Viscosity of Hercules 3501-6 Resin. Journal of Composite Materials, 16(6), 510-520. doi:10.1177/002199838201600605 | es_ES |
dc.description.references | Gupta, A., Kelly, P. A., Bickerton, S., & Walbran, W. A. (2012). Simulating the effect of temperature elevation on clamping force requirements during rigid-tool Liquid Composite Moulding processes. Composites Part A: Applied Science and Manufacturing, 43(12), 2221-2229. doi:10.1016/j.compositesa.2012.08.003 | es_ES |
dc.description.references | Kabo, G. J., Kozyro, A. A., Krouk, V. S., Sevruk, V. M., Yursha, I. A., Simirsky, V. V., & Gogolinsky, V. I. (1992). Thermodynamic properties of 6-aminohexanoic lactam (ɛ-caprolactam). The Journal of Chemical Thermodynamics, 24(1), 1-13. doi:10.1016/s0021-9614(05)80249-6 | es_ES |
dc.description.references | Marx, P., Smith, C. W., Worthington, A. E., & Dole, M. (1955). Specific Heat of Synthetic High Polymers. IV. Polycaprolactam. The Journal of Physical Chemistry, 59(10), 1015-1019. doi:10.1021/j150532a005 | es_ES |
dc.description.references | Dole, M., & Wunderlich, B. (1959). Die Makromolekulare Chemie, 34(1), 29-49. doi:10.1002/macp.1959.020340102 | es_ES |
dc.description.references | Kim, K. J., Kim, Y. Y., Yoon, B. S., & Yoon, K. J. (1995). Mechanism and kinetics of adiabatic anionic polymerization of ε-caprolactam in the presence of various activators. Journal of Applied Polymer Science, 57(11), 1347-1358. doi:10.1002/app.1995.070571111 | es_ES |
dc.description.references | Malkin, A. Y., Ivanova, S. L., Frolov, V. G., Ivanova, A. N., & Andrianova, Z. S. (1982). Kinetics of anionic polymerization of lactams. (Solution of non-isothermal kinetic problems by the inverse method). Polymer, 23(12), 1791-1800. doi:10.1016/0032-3861(82)90124-0 | es_ES |
dc.description.references | Camargo, R. E., Gonzalez, V. M., Macosko, C. W., & Tirrell, M. (1983). Bulk Polymerization Kinetics by the Adiabatic Reactor Method. Rubber Chemistry and Technology, 56(4), 774-783. doi:10.5254/1.3538154 | es_ES |
dc.description.references | Teuwen, J. J. E., van Geenen, A. A., & Bersee, H. E. N. (2012). Novel Reaction Kinetic Model for Anionic Polyamide-6. Macromolecular Materials and Engineering, 298(2), 163-173. doi:10.1002/mame.201100457 | es_ES |
dc.description.references | RUIZ, E., ACHIM, V., SOUKANE, S., TROCHU, F., & BREARD, J. (2006). Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites. Composites Science and Technology, 66(3-4), 475-486. doi:10.1016/j.compscitech.2005.06.013 | es_ES |
dc.description.references | García, J. A., Gascón, L., Chinesta, F., Ruiz, E., & Trochu, F. (2010). An efficient solver of the saturation equation in liquid composite molding processes. International Journal of Material Forming, 3(S2), 1295-1302. doi:10.1007/s12289-010-0681-8 | es_ES |
dc.description.references | Chui, W. K., Glimm, J., Tangerman, F. M., Jardine, A. P., Madsen, J. S., Donnellan, T. M., & Leek, R. (1997). Case Study from Industry:Process Modeling in Resin Transfer Molding as a Method to Enhance Product Quality. SIAM Review, 39(4), 714-727. doi:10.1137/s0036144596308546 | es_ES |
dc.description.references | Gascón LL, García JA, Ruiz E, Modelling and prediction of saturation in liquid composite molding, submitted to publication, 2013[Please update Ref 21.]. | es_ES |