Mostrar el registro sencillo del ítem
dc.contributor.author | Alonso-Jordá, Pedro | es_ES |
dc.contributor.author | Argüelles, Daniel | es_ES |
dc.contributor.author | Ranilla, José | es_ES |
dc.contributor.author | Vidal Maciá, Antonio Manuel | es_ES |
dc.date.accessioned | 2014-09-16T07:33:42Z | |
dc.date.issued | 2013-09 | |
dc.identifier.issn | 0920-8542 | |
dc.identifier.uri | http://hdl.handle.net/10251/39670 | |
dc.description.abstract | There exist algorithms, also called "fast" algorithms, which exploit the special structure of Toeplitz matrices so that, e.g., allow to solve a linear system of equations in O(n2) flops. However, some implementations of classical algorithms that do not use this structure (O(n3) flops) highly reduce the time to solution when several cores are available. That is why it is necessary to work on "fast" algorithms so that they do not lose track of the benefits of new hardware/software. In this work, we propose a new approach to the Generalized Schur Algorithm, a very known al- gorithm for the solution of Toeplitz systems, to work on a Block-Toeplitz matrix. Our algorithm is based on matrix-matrix multiplications, thus allowing to exploit an efficient implementation of this operation if it exists. Our algorithm also makes use of the thread level parallelism featured by multicores to decrease execution time. | es_ES |
dc.description.sponsorship | PROMETEO/2009/013, Generalitat Valenciana. Projects TEC2009-13741, TIN2010-14971 and TIN2011-15734-E of the Ministerio Espanol de Ciencia e Innovacion, and TEC2012-38142-C04 of the Ministerio Espanol de Economia y Competitividad. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Journal of Supercomputing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Block-Toeplitz | es_ES |
dc.subject | Linear systems | es_ES |
dc.subject | Generalized Schur Algorithm | es_ES |
dc.subject | Multicore-computers | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | A multicore solution to Block-Toeplitz linear systems of equations | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.identifier.doi | 10.1007/s11227-012-0824-4 | |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F013/ES/Computacion de altas prestaciones sobre arquitecturas actuales en porblemas de procesado múltiple de señal/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2012-38142-C04-01/ES/PROCESADO DISTRIBUIDO Y COLABORATIVO DE SEÑALES SONORAS: CONTROL ACTIVO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2009-13741/ES/Spatial Audio Systems Based On Massive Parallel Processing Of Multichannel Acoustic Signals With General Purpose-Graphics Processing Units (Gp-Gpu) And Multicores/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2012-38142-C04-04/ES/PROCESADO DISTRIBUIDO Y COLABORATIVO DE SEÑALES SONORAS: COMPUTACION DISTRIBUIDA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2010-14971/ES/REDUCCION DE CARACTERISTICAS Y COMPUTACION DE ALTAS PRESTACIONES EN PROBLEMAS DE ALTA DIMENSIONALIDAD/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2011-15734-E/ES/RED DE COMPUTACION DE ALTAS PRESTACIONES SOBRE ARQUITECTURAS PARALELAS HETEROGENEAS (CAPAP-H4) RENOVACION/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Alonso-Jordá, P.; Argüelles, D.; Ranilla, J.; Vidal Maciá, AM. (2013). A multicore solution to Block-Toeplitz linear systems of equations. Journal of Supercomputing. 65(3):999-1009. https://doi.org/10.1007/s11227-012-0824-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://link.springer.com/article/10.1007%2Fs11227-012-0824-4 | es_ES |
dc.description.upvformatpinicio | 999 | es_ES |
dc.description.upvformatpfin | 1009 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 65 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 232744 | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Alonso P, Badía JM, Vidal AM (2005) An efficient parallel algorithm to solve block–Toeplitz systems. J Supercomput 32:251–278 | es_ES |
dc.description.references | Alonso P, Argüeso F, Cortina R, Ranilla J, Vidal AM Non-linear parallel solver for detecting point sources in CMB maps using Bayesian techniques. J Math Chem. doi: 10.1007/s10910-012-0078-7 | es_ES |
dc.description.references | Anderson E et al (1999) LAPACK users’ guide, 3rd edn. SIAM, Philadelphia | es_ES |
dc.description.references | Bischof C, van Loan C (1987) The WY representation for products of householder matrices. SIAM J Sci Stat Comput 8(1):2–13 | es_ES |
dc.description.references | Chun J, Kailath T, Lev-Ari H (1987) Fast parallel algorithms for QR and triangular factorization. SIAM J Sci Stat Comput 8(6):899–913 | es_ES |
dc.description.references | Cybenko G, Berry M (1990) Hyperbolic householder algorithms for factoring structured matrices. SIAM J Matrix Anal Appl 11(4):499–520 | es_ES |
dc.description.references | Gallivan K, Thirumalai S, Van Dooren P (1994) On solving block Toeplitz systems using a block Schur algorithm. In: Proceedings of the 23rd international conference on parallel processing, vol 3. CRC Press, Boca Raton, pp 274–281 | es_ES |
dc.description.references | Gustavson FG (1997) Recursion leads to automatic variable blocking for dense linear-algebra algorithms. IBM J Res Dev 41(6):737–755 | es_ES |
dc.description.references | Intel MKL (2012) http://software.intel.com/en-us/articles/intel-mkl | es_ES |
dc.description.references | Jin XQ (2002) Developments and applications of Block Toeplitz iterative solvers. Combinatorics and computer science. Science Press, Beijing | es_ES |
dc.description.references | Kailath T, Sayed AH (1995) Displacement structure: theory and applications. SIAM Rev 37(3):297–386 | es_ES |
dc.description.references | PLASMA Project (2012) The parallel linear algebra for scalable multi-core architectures. http://icl.cs.utk.edu/plasma | es_ES |
dc.description.references | StructPack (2012) A high performance computing library for structured matrices. http://www.inco2.upv.es/structpack.html | es_ES |