- -

A multidimensional approach for detecting irony in Twitter

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A multidimensional approach for detecting irony in Twitter

Show full item record

Reyes Pérez, A.; Rosso ., P.; Veale, T. (2013). A multidimensional approach for detecting irony in Twitter. Language Resources and Evaluation. 47(1):239-268. doi:10.1007/s10579-012-9196-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/40166

Files in this item

Item Metadata

Title: A multidimensional approach for detecting irony in Twitter
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
Irony is a pervasive aspect of many online texts, one made all the more difficult by the absence of face-to-face contact and vocal intonation. As our media increasingly become more social, the problem of irony detection ...[+]
Subjects: Irony detection , Figurative language processing , Negation , Web text analysis
Copyrigths: Cerrado
Source:
Language Resources and Evaluation. (issn: 1574-020X ) (eissn: 1574-0218 )
DOI: 10.1007/s10579-012-9196-x
Publisher:
Springer Netherlands
Publisher version: http://dx.doi.org/10.1007/s10579-012-9196-x
Thanks:
This work has been done in the framework of the VLC/CAMPUS Microcluster on Multimodal Interaction in Intelligent Systems and it has been partially funded by the European Commission as part of the WIQEI IRSES project (grant ...[+]
Type: Artículo

References

Artstein, R., & Poesio, M. (2008). Inter-coder agreement for computational linguistics. Computational Linguistics, 34(4), 555–596.

Attardo, S. (2007). Irony as relevant inappropriateness. In R. Gibbs & H. Colston (Eds.), Irony in language and thought (pp. 135–174). London: Taylor and Francis Group.

Balog, K., Mishne, G., & Rijke, M. (2006). Why are they excited? Identifying and explaining spikes in blog mood levels. In: European chapter of the association of computational linguistics (EACL 2006). [+]
Artstein, R., & Poesio, M. (2008). Inter-coder agreement for computational linguistics. Computational Linguistics, 34(4), 555–596.

Attardo, S. (2007). Irony as relevant inappropriateness. In R. Gibbs & H. Colston (Eds.), Irony in language and thought (pp. 135–174). London: Taylor and Francis Group.

Balog, K., Mishne, G., & Rijke, M. (2006). Why are they excited? Identifying and explaining spikes in blog mood levels. In: European chapter of the association of computational linguistics (EACL 2006).

Burfoot, C., & Baldwin, T. (2009). Automatic satire detection: Are you having a laugh? In: ACL-IJCNLP ’09: Proceedings of the ACL-IJCNLP 2009 conference short papers (pp. 161–164).

Carvalho, P., Sarmento, L., Silva, M., & de Oliveira, E. (2009). Clues for detecting irony in user-generated contents: Oh $$\ldots$$ !! it’s “so easy” ;-). In: TSA ’09: Proceedings of the 1st international CIKM workshop on topic-sentiment analysis for mass opinion (pp. 53–56). Hong Kong: ACM.

Chin-Yew, L., & Och, F. (2004). Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics. In: ACL ’04: Proceedings of the 42nd annual meeting on association for computational linguistics (p. 605). Morristown, NJ: Association for Computational Linguistics.

Clark, H., & Gerrig, R. (1984). On the pretense theory of irony. Journal of Experimental Psychology: General, 113(1), 121–126.

Cohen, W., Ravikumar, P., & Fienberg, S. (2003). A comparison of string distance metrics for name-matching tasks. In: Proceedings of IJCAI-03 workshop on information integration (pp. 73–78).

Colston, H. (2007). On necessary conditions for verbal irony comprehension. In R. Gibbs & H. Colston (Eds.), Irony in language and thought (pp. 97–134). London: Taylor and Francis Group.

Curcó, C. (2007). Irony: Negation, echo, and metarepresentation. In R. Gibbs & H. Colston (Eds.), Irony in language and thought (pp. 269–296). London: Taylor and Francis Group.

Davidov, D., Tsur, O., & Rappoport, A. (2010). Semi-supervised recognition of sarcastic sentences in Twitter and Amazon. In: Proceedings of the 23rd international conference on computational linguistics (COLING).

Gibbs, R. (2007). Irony in talk among friends. In R. Gibbs & H. Colston (Eds.), Irony in language and thought (pp. 339–360). London: Taylor and Francis Group.

Giora, R. (1995). On irony and negation. Discourse Processes, 19(2), 239–264.

Grice, H. (1975) Logic and conversation. In P. Cole & J. L. Morgan (Eds.), Syntax and semantics (Vol. 3, pp. 41–58). New York: Academic Press.

Guthrie, D., Allison, B., Liu, W., Guthrie, L., & Wilks, Y. (2006). A closer look at skip-gram modelling. In: Proceedings of the fifth international conference on language resources and evaluation (LREC-2006) (pp. 1222–1225).

Kreuz, R. (2001) Using figurative language to increase advertising effectiveness. In: Office of naval research military personnel research science workshop. Memphis, TN.

Kumon-Nakamura, S., Glucksberg, S., & Brown, M. (2007). How about another piece of pie: The allusional pretense theory of discourse irony. In R. Gibbs & H. Colston (Eds.), Irony in language and thought (pp. 57–96). London: Taylor and Francis Group.

Lucariello, J. (2007) Situational irony: A concept of events gone away. In R. Gibbs & H. Colston (Eds.), Irony in language and thought (pp. 467–498). London: Taylor and Francis Group.

Mihalcea, R., & Strapparava, C. (2006a). Learning to laugh (automatically): Computational models for humor recognition. Journal of Computational Intelligence, 22(2), 126–142.

Mihalcea, R., & Strapparava, C. (2006b). Technologies that make you smile: Adding humour to text-based applications. IEEE Intelligent Systems, 21(5), 33–39.

Miller, G. (1995). Wordnet: A lexical database for English. Communications of the ACM, 38(11), 39–41.

Monge, A., & Elkan, C. (1996). The field matching problem: Algorithms and applications. In: In Proceedings of the second international conference on knowledge discovery and data mining (pp. 267–270).

Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? sentiment classification using machine learning techniques. In: Proceedings of the 2002 conference on empirical methods in natural language processing (EMNLP) (pp. 79–86). Morristown, NJ: Association for Computational Linguistics.

Pedersen, T., Patwardhan, S., & Michelizzi, J. (2004). Wordnet::Similarity—Measuring the relatedness of concepts. In: Proceedings of the 9th national conference on artificial intelligence (AAAI-04) (pp. 1024–1025). Morristown, NJ: Association for Computational Linguistics.

Reyes, A., & Rosso, P. (2011). Mining subjective knowledge from customer reviews: A specific case of irony detection. In: Proceedings of the 2nd workshop on computational approaches to subjectivity and sentiment analysis (WASSA 2.011) (pp. 118–124). Association for Computational Linguistics.

Reyes, A., Rosso, P., & Buscaldi, D. (2009). Humor in the blogosphere: First clues for a verbal humor taxonomy. Journal of Intelligent Systems 18(4), 311–331.

Saif, M., Cody, D., & Bonnie, D. (2009). Generating high-coverage semantic orientation lexicons from overtly marked words and a thesaurus. In: Proceedings of the 2009 conference on EMNLP (pp. 599–608). Morristown, NJ: Association for Computational Linguistics.

Sarmento, L., Carvalho, P., Silva, M., & de Oliveira, E. (2009). Automatic creation of a reference corpus for political opinion mining in user-generated content. In: TSA ’09: Proceedings of the 1st international CIKM workshop on topic-sentiment analysis for mass opinion (pp. 29–36). ACM: Hong Kong, China.

Sperber, D., & Wilson, D. (1992). On verbal irony. Lingua, 87, 53–76.

Tsur, O., Davidov, D., & Rappoport, A. (2010). {ICWSM}—A great catchy name: Semi-supervised recognition of sarcastic sentences in online product reviews. In W. W. Cohen & S. Gosling (Eds.), Proceedings of the fourth international AAAI conference on weblogs and social media (pp. 162–169). Washington, D.C.: The AAAI Press.

Utsumi, A. (1996). A unified theory of irony and its computational formalization. In: Proceedings of the 16th conference on computational linguistics (pp. 962–967). Morristown, NJ: Association for Computational Linguistics.

Veale, T., & Hao, Y. (2009). Support structures for linguistic creativity: A computational analysis of creative irony in similes. In: Proceedings of CogSci 2009, the 31st annual meeting of the cognitive science society (pp. 1376–1381).

Veale, T., & Hao, Y. (2010). Detecting ironic intent in creative comparisons. In: Proceedings of 19th European conference on artificial intelligence—ECAI 2010 (pp. 765–770). Amsterdam: IOS Press.

Whissell, C. (2009). Using the revised dictionary of affect in language to quantify the emotional undertones of samples of natural language. Psychological Reports, 105(2), 509–521.

Wilson, D., & Sperber, D. (2007). On verbal irony. In R. Gibbs & H. Colston (Eds.), Irony in language and thought (pp. 35–56). London: Taylor and Francis Group.

Witten, I., & Frank, E. (2005). Data mining. Practical machine learning tools and techniques. Los Altos, CA, Amsterdam: Morgan Kaufmann Publishers, Elsevier.

[-]

This item appears in the following Collection(s)

Show full item record