- -

A multidimensional approach for detecting irony in Twitter

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A multidimensional approach for detecting irony in Twitter

Show simple item record

Files in this item

dc.contributor.author Reyes Pérez, Antonio es_ES
dc.contributor.author Rosso ., Paolo es_ES
dc.contributor.author Veale, Tony es_ES
dc.date.accessioned 2014-09-24T18:21:00Z
dc.date.issued 2013-03
dc.identifier.issn 1574-020X
dc.identifier.uri http://hdl.handle.net/10251/40166
dc.description.abstract Irony is a pervasive aspect of many online texts, one made all the more difficult by the absence of face-to-face contact and vocal intonation. As our media increasingly become more social, the problem of irony detection will become even more pressing. We describe here a set of textual features for recognizing irony at a linguistic level, especially in short texts created via social media such as Twitter postings or ¿tweets¿. Our experiments concern four freely available data sets that were retrieved from Twitter using content words (e.g. ¿Toyota¿) and user-generated tags (e.g. ¿#irony¿). We construct a new model of irony detection that is assessed along two dimensions: representativeness and relevance. Initial results are largely positive, and provide valuable insights into the figurative issues facing tasks such as sentiment analysis, assessment of online reputations, or decision making. es_ES
dc.description.sponsorship This work has been done in the framework of the VLC/CAMPUS Microcluster on Multimodal Interaction in Intelligent Systems and it has been partially funded by the European Commission as part of the WIQEI IRSES project (grant no. 269180) within the FP 7 Marie Curie People Framework, and by MICINN as part of the Text-Enterprise 2.0 project (TIN2009-13391-C04-03) within the Plan I+D+I. The National Council for Science and Technology (CONACyT - Mexico) has funded the research work of Antonio Reyes. en_EN
dc.language Inglés es_ES
dc.publisher Springer Netherlands es_ES
dc.relation.ispartof Language Resources and Evaluation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Irony detection es_ES
dc.subject Figurative language processing es_ES
dc.subject Negation es_ES
dc.subject Web text analysis es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A multidimensional approach for detecting irony in Twitter es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/s10579-012-9196-x
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2009-13391-C04-03/ES/Text-Enterprise 2.0: Tecnicas De Comprension De Textos Aplicadas A Las Necesidades De La Empresa 2.0/
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/grant no. 269180/EU/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Reyes Pérez, A.; Rosso ., P.; Veale, T. (2013). A multidimensional approach for detecting irony in Twitter. Language Resources and Evaluation. 47(1):239-268. https://doi.org/10.1007/s10579-012-9196-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10579-012-9196-x es_ES
dc.description.upvformatpinicio 239 es_ES
dc.description.upvformatpfin 268 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 47 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 255769
dc.identifier.eissn 1574-0218
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México
dc.description.references Artstein, R., & Poesio, M. (2008). Inter-coder agreement for computational linguistics. Computational Linguistics, 34(4), 555–596. es_ES
dc.description.references Attardo, S. (2007). Irony as relevant inappropriateness. In R. Gibbs & H. Colston (Eds.), Irony in language and thought (pp. 135–174). London: Taylor and Francis Group. es_ES
dc.description.references Balog, K., Mishne, G., & Rijke, M. (2006). Why are they excited? Identifying and explaining spikes in blog mood levels. In: European chapter of the association of computational linguistics (EACL 2006). es_ES
dc.description.references Burfoot, C., & Baldwin, T. (2009). Automatic satire detection: Are you having a laugh? In: ACL-IJCNLP ’09: Proceedings of the ACL-IJCNLP 2009 conference short papers (pp. 161–164). es_ES
dc.description.references Carvalho, P., Sarmento, L., Silva, M., & de Oliveira, E. (2009). Clues for detecting irony in user-generated contents: Oh $$\ldots$$ !! it’s “so easy” ;-). In: TSA ’09: Proceedings of the 1st international CIKM workshop on topic-sentiment analysis for mass opinion (pp. 53–56). Hong Kong: ACM. es_ES
dc.description.references Chin-Yew, L., & Och, F. (2004). Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics. In: ACL ’04: Proceedings of the 42nd annual meeting on association for computational linguistics (p. 605). Morristown, NJ: Association for Computational Linguistics. es_ES
dc.description.references Clark, H., & Gerrig, R. (1984). On the pretense theory of irony. Journal of Experimental Psychology: General, 113(1), 121–126. es_ES
dc.description.references Cohen, W., Ravikumar, P., & Fienberg, S. (2003). A comparison of string distance metrics for name-matching tasks. In: Proceedings of IJCAI-03 workshop on information integration (pp. 73–78). es_ES
dc.description.references Colston, H. (2007). On necessary conditions for verbal irony comprehension. In R. Gibbs & H. Colston (Eds.), Irony in language and thought (pp. 97–134). London: Taylor and Francis Group. es_ES
dc.description.references Curcó, C. (2007). Irony: Negation, echo, and metarepresentation. In R. Gibbs & H. Colston (Eds.), Irony in language and thought (pp. 269–296). London: Taylor and Francis Group. es_ES
dc.description.references Davidov, D., Tsur, O., & Rappoport, A. (2010). Semi-supervised recognition of sarcastic sentences in Twitter and Amazon. In: Proceedings of the 23rd international conference on computational linguistics (COLING). es_ES
dc.description.references Gibbs, R. (2007). Irony in talk among friends. In R. Gibbs & H. Colston (Eds.), Irony in language and thought (pp. 339–360). London: Taylor and Francis Group. es_ES
dc.description.references Giora, R. (1995). On irony and negation. Discourse Processes, 19(2), 239–264. es_ES
dc.description.references Grice, H. (1975) Logic and conversation. In P. Cole & J. L. Morgan (Eds.), Syntax and semantics (Vol. 3, pp. 41–58). New York: Academic Press. es_ES
dc.description.references Guthrie, D., Allison, B., Liu, W., Guthrie, L., & Wilks, Y. (2006). A closer look at skip-gram modelling. In: Proceedings of the fifth international conference on language resources and evaluation (LREC-2006) (pp. 1222–1225). es_ES
dc.description.references Kreuz, R. (2001) Using figurative language to increase advertising effectiveness. In: Office of naval research military personnel research science workshop. Memphis, TN. es_ES
dc.description.references Kumon-Nakamura, S., Glucksberg, S., & Brown, M. (2007). How about another piece of pie: The allusional pretense theory of discourse irony. In R. Gibbs & H. Colston (Eds.), Irony in language and thought (pp. 57–96). London: Taylor and Francis Group. es_ES
dc.description.references Lucariello, J. (2007) Situational irony: A concept of events gone away. In R. Gibbs & H. Colston (Eds.), Irony in language and thought (pp. 467–498). London: Taylor and Francis Group. es_ES
dc.description.references Mihalcea, R., & Strapparava, C. (2006a). Learning to laugh (automatically): Computational models for humor recognition. Journal of Computational Intelligence, 22(2), 126–142. es_ES
dc.description.references Mihalcea, R., & Strapparava, C. (2006b). Technologies that make you smile: Adding humour to text-based applications. IEEE Intelligent Systems, 21(5), 33–39. es_ES
dc.description.references Miller, G. (1995). Wordnet: A lexical database for English. Communications of the ACM, 38(11), 39–41. es_ES
dc.description.references Monge, A., & Elkan, C. (1996). The field matching problem: Algorithms and applications. In: In Proceedings of the second international conference on knowledge discovery and data mining (pp. 267–270). es_ES
dc.description.references Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? sentiment classification using machine learning techniques. In: Proceedings of the 2002 conference on empirical methods in natural language processing (EMNLP) (pp. 79–86). Morristown, NJ: Association for Computational Linguistics. es_ES
dc.description.references Pedersen, T., Patwardhan, S., & Michelizzi, J. (2004). Wordnet::Similarity—Measuring the relatedness of concepts. In: Proceedings of the 9th national conference on artificial intelligence (AAAI-04) (pp. 1024–1025). Morristown, NJ: Association for Computational Linguistics. es_ES
dc.description.references Reyes, A., & Rosso, P. (2011). Mining subjective knowledge from customer reviews: A specific case of irony detection. In: Proceedings of the 2nd workshop on computational approaches to subjectivity and sentiment analysis (WASSA 2.011) (pp. 118–124). Association for Computational Linguistics. es_ES
dc.description.references Reyes, A., Rosso, P., & Buscaldi, D. (2009). Humor in the blogosphere: First clues for a verbal humor taxonomy. Journal of Intelligent Systems 18(4), 311–331. es_ES
dc.description.references Saif, M., Cody, D., & Bonnie, D. (2009). Generating high-coverage semantic orientation lexicons from overtly marked words and a thesaurus. In: Proceedings of the 2009 conference on EMNLP (pp. 599–608). Morristown, NJ: Association for Computational Linguistics. es_ES
dc.description.references Sarmento, L., Carvalho, P., Silva, M., & de Oliveira, E. (2009). Automatic creation of a reference corpus for political opinion mining in user-generated content. In: TSA ’09: Proceedings of the 1st international CIKM workshop on topic-sentiment analysis for mass opinion (pp. 29–36). ACM: Hong Kong, China. es_ES
dc.description.references Sperber, D., & Wilson, D. (1992). On verbal irony. Lingua, 87, 53–76. es_ES
dc.description.references Tsur, O., Davidov, D., & Rappoport, A. (2010). {ICWSM}—A great catchy name: Semi-supervised recognition of sarcastic sentences in online product reviews. In W. W. Cohen & S. Gosling (Eds.), Proceedings of the fourth international AAAI conference on weblogs and social media (pp. 162–169). Washington, D.C.: The AAAI Press. es_ES
dc.description.references Utsumi, A. (1996). A unified theory of irony and its computational formalization. In: Proceedings of the 16th conference on computational linguistics (pp. 962–967). Morristown, NJ: Association for Computational Linguistics. es_ES
dc.description.references Veale, T., & Hao, Y. (2009). Support structures for linguistic creativity: A computational analysis of creative irony in similes. In: Proceedings of CogSci 2009, the 31st annual meeting of the cognitive science society (pp. 1376–1381). es_ES
dc.description.references Veale, T., & Hao, Y. (2010). Detecting ironic intent in creative comparisons. In: Proceedings of 19th European conference on artificial intelligence—ECAI 2010 (pp. 765–770). Amsterdam: IOS Press. es_ES
dc.description.references Whissell, C. (2009). Using the revised dictionary of affect in language to quantify the emotional undertones of samples of natural language. Psychological Reports, 105(2), 509–521. es_ES
dc.description.references Wilson, D., & Sperber, D. (2007). On verbal irony. In R. Gibbs & H. Colston (Eds.), Irony in language and thought (pp. 35–56). London: Taylor and Francis Group. es_ES
dc.description.references Witten, I., & Frank, E. (2005). Data mining. Practical machine learning tools and techniques. Los Altos, CA, Amsterdam: Morgan Kaufmann Publishers, Elsevier. es_ES


This item appears in the following Collection(s)

Show simple item record