- -

F-Measure as the error function to train neural networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

F-Measure as the error function to train neural networks

Mostrar el registro completo del ítem

Pastor Pellicer, J.; Zamora Martínez, FJ.; España Boquera, S.; Castro-Bleda, MJ. (2013). F-Measure as the error function to train neural networks. En Advances in Computational Intelligence. Springer Verlag (Germany). 376-384. https://doi.org/10.1007/978-3-642-38679-4_37

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/40169

Ficheros en el ítem

Metadatos del ítem

Título: F-Measure as the error function to train neural networks
Autor: Pastor Pellicer, Joan Zamora Martínez, Francisco Julián España Boquera, Salvador Castro-Bleda, Maria Jose
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
Imbalance datasets impose serious problems in machine learning. For many tasks characterized by imbalanced data, the F-Measure seems more appropiate than the Mean Square Error or other error measures. This paper studies ...[+]
Palabras clave: Neural Networks , Error-Backpropagation algorithm , F-Measure , Imbalanced datasets
Derechos de uso: Cerrado
ISBN: 978-3-642-38678-7
Fuente:
Advances in Computational Intelligence. (issn: 0302-9743 )
DOI: 10.1007/978-3-642-38679-4_37
Editorial:
Springer Verlag (Germany)
Versión del editor: http://link.springer.com/chapter/10.1007/978-3-642-38679-4_37
Serie: Lecture Notes in Computer Science;
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TIN2010-18958/ES/HITITA: HERRAMIENTA INTERACTIVA PARA LA TRANSCRIPCION DE IMAGENES DE TEXTOS ANTIGUOS/
info:eu-repo/grantAgreement/MICINN//BES-2011-046167/ES/BES-2011-046167/
Agradecimientos:
This work has been partially supported by MICINN project HITITA (TIN2010-18958) and by the FPI-MICINN (BES-2011-046167) scholarship from Ministerio de Ciencia e Innovación, Gobierno de España.
Tipo: Capítulo de libro

References

Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: An exact algorithm for f-measure maximization. Advances in Neural Information Processing Systems 24, 223–230 (2011)

Al-Haddad, L., Morris, C.W., Boddy, L.: Training radial basis function neural networks: effects of training set size and imbalanced training sets. J. of Microbiological Methods 43(1), 33–44 (2000)

Bilmes, J., Asanovic, K., Chin, C.W., Demmel, J.: Using PHiPAC to speed error back-propagation learning. In: Proc. of ICASSP, vol. 5, pp. 4153–4156 (1997) [+]
Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: An exact algorithm for f-measure maximization. Advances in Neural Information Processing Systems 24, 223–230 (2011)

Al-Haddad, L., Morris, C.W., Boddy, L.: Training radial basis function neural networks: effects of training set size and imbalanced training sets. J. of Microbiological Methods 43(1), 33–44 (2000)

Bilmes, J., Asanovic, K., Chin, C.W., Demmel, J.: Using PHiPAC to speed error back-propagation learning. In: Proc. of ICASSP, vol. 5, pp. 4153–4156 (1997)

Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley (2001)

Gatos, B., Ntirogiannis, K., Pratikakis, I.: ICDAR 2009 document image binarization contest (DIBCO 2009). In: Proc. of ICDAR, pp. 1375–1382 (2009)

Gatos, B., Ntirogiannis, K., Pratikakis, I.: DIBCO 2009: document image binarization contest. Int. J. on Document Analysis and Recognition 14(1), 35–44 (2011)

Hidalgo, J.L., España, S., Castro, M.J., Pérez, J.A.: Enhancement and cleaning of handwritten data by using neural networks. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 376–383. Springer, Heidelberg (2005)

Jansche, M.: Maximum expected f-measure training of logistic regression models. In: Proc. of HLT & EMNLP, pp. 692–699 (2005)

Musicant, D.R., Kumar, V., Ozgur, A.: Optimizing f-measure with support vector machines. In: Proc. of Int. Florida AI Research Society Conference, pp. 356–360 (2003)

Ntirogiannis, K., Gatos, B., Pratikakis, I.: A Performance Evaluation Methodology for Historical Document Image Binarization (2012)

Pratikakis, I., Gatos, B., Ntirogiannis, K.: ICFHR 2012 Competition on Handwritten Document Image Binarization (H-DIBCO 2012) (2012)

Pratikakis, I., Gatos, B., Ntirogiannis, K.: H-DIBCO 2010-handwritten document image binarization competition. In: Proc. of ICFHR, pp. 727–732 (2010)

van Rijsbergen, C.J.: A theoretical basis for the use of co-occurrence data in information retrieval. J. of Documentation 33(2), 106–119 (1977)

Wolf, C.: Document Ink Bleed-Through Removal with Two Hidden Markov Random Fields and a Single Observation Field. IEEE PAMI 32(3), 431–447 (2010)

Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. on Knowledge and Data Engineering 18(1), 63–77 (2006)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem