- -

A decision analysis framework for stakeholder involvement and learning in groundwater management

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A decision analysis framework for stakeholder involvement and learning in groundwater management

Show full item record

Karjalainen, T.; Rossi, PM.; Ala-Aho, P.; Eskelinen, R.; Reinikainen, K.; Klove, B.; Pulido-Velazquez, M.... (2013). A decision analysis framework for stakeholder involvement and learning in groundwater management. Hydrology and Earth System Sciences. 17:1-13. https://doi.org/10.5194/hess-17-1-2013

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/40212

Files in this item

Item Metadata

Title: A decision analysis framework for stakeholder involvement and learning in groundwater management
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Issued date:
Abstract:
[EN] Multi-criteria decision analysis (MCDA) methods are increasingly used to facilitate both rigorous analysis and stakeholder involvement in natural and water resource planning. Decision making in that context is often ...[+]
Subjects: Water-Resources Management , Multiobjective Optimization , Multicriteria Analysis , Ecosystem Services , Support-System , River-Basin , Catchment , Participation , Methodology , Resolution
Copyrigths: Reconocimiento (by)
Source:
Hydrology and Earth System Sciences. (issn: 1027-5606 )
DOI: 10.5194/hess-17-1-2013
Publisher:
European Geosciences Union (EGU)
Publisher version: http://dx.doi.org/10.5194/hess-17-5141-2013
Project ID: info:eu-repo/grantAgreement/EC/FP7/226536/EU
Thanks:
This study was funded by the GENESIS project (contract number 226536) under the EU’s 7th Framework Programme and the Academy of Finland (project number 128377).
Type: Artículo

References

Abbaspour, K. C.: SWAT-CUP2: SWAT calibration and uncertainty programs – A user manual, Department of Systems Analysis, Integrated Assessment and Modelling (SIAM), Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland, 95 pp., 2008.

Abbaspour, K. C., Johnson, C. A., and Van Genuchten, M. T.: Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure, Vadose Zone J., 3, 1340–1352, 2004.

Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R.: Modelling hydrology and water quality in the Pre-Alpine/Alpine Thur watershed using SWAT, J. Hydrol., 333, 413–430, 2007. [+]
Abbaspour, K. C.: SWAT-CUP2: SWAT calibration and uncertainty programs – A user manual, Department of Systems Analysis, Integrated Assessment and Modelling (SIAM), Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland, 95 pp., 2008.

Abbaspour, K. C., Johnson, C. A., and Van Genuchten, M. T.: Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure, Vadose Zone J., 3, 1340–1352, 2004.

Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R.: Modelling hydrology and water quality in the Pre-Alpine/Alpine Thur watershed using SWAT, J. Hydrol., 333, 413–430, 2007.

Adam, J. C. and Lettenmaier, D. P.: Adjustment of global gridded precipitation for systematic bias, J. Geophys. Res., 108, 4257–4271, 2003.

Akhtar, M., Ahmad, N., and Booij, M. J.: The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios, J. Hydrol., 355, 148–163, 2008.

Arnold, J. G., Allen, P. M., and Bernhardt, G.: A comprehensive surface-groundwater flow model, J. Hydrol., 142, 47–69, 1993.

Arnold, J. G., Williams, J. R., and Maidment, D. R.: Continuous-time water and sediment routing model for large basins, J. Hydraul. Eng., 121, 171–183, 1995.

Arnold, J. G., Srinivasan, R., Muttiah, R., and Willams, J. R.: Large area hydrological modeling and assessment part I: model development, J. Am. Water Resour. As., 34, 73–89, 1998.

Babel, M. S., Shrestha, B., and Perret, S.: Hydrological impact of biofuel production: A case study of the Khlong Phlo Watershed in Thailand, Agr. Water Manage., 101, 8–26, 2011.

Benaman, J., Christine, A. S., and Douglas, A. H.: Calibration and validation of soil and water assessment tool on an agricultural watershed in upstate New York, J. Hydrol. Eng.-ASCE, 10, 363–374, 2005.

Bogaart, P. W., Van Balen, R. T., Kasse, C., and Vandenberghe, J.: Process-based modeling of fluvial system response to rapid climate change – I: model formulation and generic applications, Quaternary Sci. Rev., 22, 2077–2095, 2003.

Boorman, D. B.: Climate, Hydrochemistry and Economics of Surface-water Systems (CHESS): adding a European dimension to the catchment modeling experience developed under LOIS, Sci. Total Environ., 314–316, 411–437, 2003.

Cai, X., Wang, D., Zhu, T., and Ringler, C.: Assessing the regional variability of GCM simulations, Geophys. Res. Lett., 36, L02706, https://doi.org/10.1029/2008GL036443, 2009.

Chen, J., Brissette, F. P., and Leconte, R.: Uncertainty of downscaling method in quantifying the impact of climate change on hydrology, J. Hydrol., 401, 190–202, 2011.

Diaz-Nieto, J. and Wilby, R. L.: A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the river Thames, United Kingdom, Climate Change, 69, 245–268, 2005.

Di Baldassarre, G., Elshamy, M., van Griensven, A., Soliman, E., Kigobe, M., Ndomba, P., Mutemi, J., Mutua, F., Moges, S., Xuan, Y., Solomatine, D., and Uhlenbrook, S.: Future hydrology and climate in the River Nile basin: a review, Hydrolog. Sci. J., 56, 199–211, 2011.

Eastham, J., Mpelasoka, F., Mainuddin, M., Ticehurst, C., Dyce, P., Hodgson,G., Ali, R., and Kirby, M.: Mekong River Basin Water Resources Assessment: Impacts of Climate Change, CSIRO: Water for a Healthy Country National Research Flagship, CSIRO, Australia, 2008.

Elshamy, M., Di Baldassarre, G., and van Griensven, A.: Characterizing climate model uncertainty using an informal Bayesian GLUE framework: an application to the River Nile, J. Hydrol. Eng., online first: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000656, 2012.

Fowler, H. J., Blenkinsop, S., and Tebald, C.: Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modeling, Int. J. Climatol., 27, 1547–1578, 2007.

Fuchs, H. J.: Data availability for studies on effects of land-cover changes on water yield, sediment and nutrients load at catchments of the Lower Mekong Basin, Working Paper 09, MRC-GTZ Cooperation Programme, 2004.

Georgakakos, K. P., Seo, D., Gupta, H., Schaake, J., and Butts, M. B.: Towards the characterization of streamflow simulation uncertainty through multimodel ensembles, J. Hydrol., 298, 222–241, 2004.

Green, W. H. and Ampt, G. A.: Studies on soil physics, 1. The flow of air and water through soils, J. Agr. Sci., 4, 11–24, 1911.

Hanratty, M. P. and Stefan, H. G.: Simulating climate change effects in a Minnesota agricultural watershed, J. Environ. Qual., 27, 1524–1532, 1998.

Hardy, R. L.: Multiquadric equations of topology and other irregular surface, J. Geophys. Res., 76, 1905–1915, 1971.

Hargreaves, G. L., Hargreaves, G. H., and Riley, J. P.: Agricultural benefits for Senegal River Basin, J. Irrig. Drain. E.-ASCE, 111, 113–124, 1985.

Hay, L. E., Wilby, R. L., and Leavesly, H. H.: Comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States, J. Am. Water Resour. As., 36, 387–397, 2000.

Hoanh, C. T., Jirayoot, K., Lacombe, G., and Srinetr, V.: Impact of climate change and development on Mekong flow regime, First assessment-2009, MRC Technical Paper No. 29, Mekong River Comission, Vientiane, Lao PDR, 2010.

Hu, Y., Maskey, S., and Uhlenbrook, S.: Downscaling daily precipitation over the Yellow River source region in China: a comparison of three statistical downscaling methods, Theor. Appl. Climatol., Online ISSN: 1434-4483, Springer Vienna, https://doi.org/10.1007/s00704-012-0745-4, 2012.

Huth, R., Kysely, J., and Dubrovsky, M.: Time structure of observed, GCM-simulated, downscaled, and stochastically generator daily temperature series, J. Climate, 14, 4047–4061, 2001.

IPCC (Intergovernmental Panel on Climate Change): Climate change: AR4 synthesis report, Cambridge University Press, Cambridge, 2007.

Ishidaira, H., Ishikawa, Y., Funada, S., and Takeuchi, K.: Estimating the evolution of vegetation cover and its hydrological impact in the Mekong River basin in the 21st century, Hydrol. Process., 22, 1395–1405, 2008.

Jackson, W. L., Gebhardt, K., and Haveren, B. P. V.: Use of the modified universal soil loss equation for average annual sediment yield estimates on small rangeland drainage basin, in: Symposium on Drainage Basin Sediment Delivery, IASH, Albuquerque, New Mexico, USA, 1986.

Johnson, C. W., Gordon, N. D., and Hanson, C. L.: North-west rangeland sediment yield analysis by the MUSLE, Transactions of the American Society of Agricultural and Biological Engineers, 26, 1889–1895, 1986.

Johnston, R. and Kummu, M.: Water resources models in the Mekong basin: a review, Water Resour. Manage., 26, 429–455, 2012.

Keskinen, M.: Water resources development and impact assessment in the Mekong Basin: which way to go?. Ambio, 37, 193–198, 2008.

Kiem, A. S., Ishidaira, H., Hapuarachchi, H. P., Zhou, M. C., Hirabayahi, Y., and Takeuchi, K.: Future hydroclimatology of the Mekong River basin simulated useing the high-resolution Japan Meteorological Agency (JMA) AGCM, Hydrol. Process., 22, 1382–1394, 2008.

Kingston, D. G., Thompson, J. R., and Kite, G.: Uncertainty in climate change projections of discharge for the Mekong River Basin, Hydrol. Earth Syst. Sci., 15, 1459–1471, https://doi.org/10.5194/hess-15-1459-2011, 2011.

Kummu, M. and Varis, O.: Sediment-related impacts due to upstream reservoir trapping, the Lower Mekong River, Geomorphology, 85, 275–293, 2007.

Kummu, M., Keskinen, M., and Varis, O.: Modern Myths of the Mekong. A critical review of water and development concepts, principles and policies. Water & Development Publications – Helsinki University of Technology, 206 pp., 2008.

Lauri, H., de Moel, H., Ward, P. J., Räsänen, T. A., Keskinen, M., and Kummu, M.: Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge, Hydrol. Earth Syst. Sci. Discuss., 9, 6569–6614, https://doi.org/10.5194/hessd-9-6569-2012, 2012.

Li, Y., Chen, B.-M., Wang, Z.-G., and Peng, S.-L.: Effects of temperature change on water discharge, and sediment and nutrient loading in the lower Pearl River basin based on SWAT modeling, Hydrolog. Sci. J., 56, 68–83, 2011.

Lu, H.: Comparative analysis of the hydrological characteristics in Lancang Mekong River basin, International symposium of flooding in South Asia, Bangladesh, 1998.

Lu, X. X.: Spatial variability and temporal change of water discharge and sediment flux in the lower Jinsha tributary: impact of environmental changes, River Res. Appl., 21, 229–243, 2005.

Masih, I., Maskey, S., Uhlenbrook, S., and Smakhtin, V.: Impact of upstream changes in rain-fed agricultural water management on downstream flows in a semi-arid basin, Agr. Water Manage., 100, 36–44, https://doi.org/10.1016/j.agwat.2011.08.013, 2011a.

Masih, I., Maskey, S., Uhlenbrook, S., and Smakhtin, V.: Assessing the impact of areal precipitation input on streamflow simulations using the SWAT model, J. Am. Water Resour. As., 47, 179–195, https://doi.org/10.1111/j.1752-1688.2010.00502.x, 2011b.

Maurer, E. P.: Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios, Climatic Change, 82, 309–325, 2007.

Maurer, E. P., Adam, J. C., and Wood, A. W.: Climate model based consensus on the hydrologic impacts of climate change to the Rio Lempa basin of Central America, Hydrol. Earth Syst. Sci., 13, 183–194, https://doi.org/10.5194/hess-13-183-2009, 2009.

Mekong River Commission: MRC Work Programme, Mekong River commission, Vientiane, 2003.

Mekong River Commission: Overview of the Hydrology of the Mekong Basin, Mekong River Commission, Vientiane, 2005.

Mekong River Commission: Integrated Basin Flow Management, Social Team 2006 Final Report, Water utilization program-environment program, Mekong River Commission, Vientiane, 2006.

Mekong River Commission: Existing, Under Construction and Planned/Proposed Hydropower Projects in the Lower Mekong Basin, September 2008, Map produced by the Mekong River Commission (MRC), available at: http://www.mrcmekong.org/programmes/hydropower.htm (last access: 10 September 2011), 2008.

Menzel, L. and Burger, G.: Climate change scenarios and runoff response in the Mulde catchment (Southern Elbe, Germany), J. Hydrol., 267, 53–64, 2002.

Michael, A., Schmidt, J., Enke, W., Deutschlander, T., and Maltiz, G.: Impact of expected increase in precipitation intensities on soil loss results of comapritive model simulations, Catena, 61, 155–164, 2005.

Minville, M., Brissette, F., and Leconte, R.: Uncertainty of the impact of climate change on the hydrology of a Nordic watershed, J. Hydrol., 358, 70–83, 2008.

Monteith, J. L.: Evaporation and the environment, in: The State and Movement of Water in Living Organisms, 19th Symposia of the Society for Experimental Biology, Cambridge University Press, London, United Kingdom, 205–234, 1965.

Naik, P. K. and Jay, D. A.: Distinguishing human and climate influences on the Columbia River: changes in mean flow and sediment transport, J. Hydrol., 404, 259–277, 2011.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models. Part I – a discussion of principles, J. Hydrology, 10, 282–290, 1970.

Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and Water Assessment Tool theoretical documentation, version 2005, Texas Water Resources Institute, College Station, Texas, USA, 2005.

Nijssen, B., O'Donnell, G., Hamlet, A., and Lettenmaier, D.: Hydrologic sensitivity of global rivers to climate change, Climate Change, 50, 143–175, 2001.

O'Neal, M. R., Nearing, M. A., Vining, R. C., Southworth, J., and Pfeifer, R. A.: Climate change impacts on soil erosion in Midwest United States with changes in crop management, Catena, 61, 165–184, 2005.

Palutikof, J. P., Winkler, J. A., Goodess, C. M., and Andresen, J. A.: The simulation of daily temperature time series from GCM Output. Part 1: comparison of model data with observations, J. Climate, 10, 2497–2513, 1997.

Phan, D. B., Wu, C. C., and Hsieh, S. C.: Impact of climate change on stream discharge and sediment yield in Northern Viet Nam, Water Res., 38, 827–836, 2011.

Phomcha, P., Wirojanagud, P., Vangpaisal, T., and Thaveevouthti, T.: Predicting sediment discharge in an agricultural watershed: a case study of the Lam Sonthi watershed, Thailand, Science Asia, 37, 43–50, 2011.

Potter, C. and Haitt, S.: Modeling river flows and sediment dynamics for the Laguna de Santa Rosa watershed in Northern California, J. Soil Water Conserv., 64, 389–393, 2009.

Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat flux and evaporation using large-scale parameters, Mon. Weather Rev., 100, 81–92, 1972.

Prudhomme, C. and Davies, H.: Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 1: baseline climate, Climate Change, 93, 177–195, https://doi.org/10.1007/s10584-008-9464-3, 2009.

Prudhomme, C., Jakob, D., and Svensson, C.: Uncertainty and climate change impact on the flood regime of small UK catchments, J. Hydrol., 277, 1–23, 2003.

Pruski, F. E. and Nearing, M. A.: Climate-induced changes in erosion during the 21st century for eight US locations, Water Resour. Res., 38, 34.1–34.11, 2002.

Roberts, T.: Downstream ecological implications of China's Lancang Hydropower and Mekong Navigation Project, International Rivers Network (IRN), 2001.

Rossi, C. G., Srinivasan, R., Jirayoot, K., Duc, T. Le., Souvannabouth, P., Binh, N., and Gassman, P. W.: Hydrologic evaluation of the Lower Mekong River Basin with the soil and water assessment tool model, International Agricultural Engineering Journal, 18, 1–13, 2009.

Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., and Hauck, L. M.: Validation of the SWAT model on a large river basin with point and nonpoint sources, J. Am. Water Resour. As., 37, 1169–1188, 2001.

Schuol, J., Abbaspour, K. C., Srinivasan, R., and Yang, H.: Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model, J. Hydrol., 352, 30–49, 2008.

Semenov, M. A., Brooks, R. J., Barrow, E. M., and Richardson, C. W.: Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates, Climate Res., 10, 95–107, 1998.

Setegn, S. G., Dargahi, B., Srivivasan, R., and Melesse, A. M.: Modeling of sediment yield from Anjeni-Gauged watershed, Ethiopia using SWAT model, J. Am. Water Res. As., 46, 514–526, 2010.

Shaw, E. H. and Lynn, P. P.: Areal rainfall using two surface fitting techniques, Bulletin of the International Association and Hydrological Science, XVII, 4–12, 1972.

SWCS: Conservation implications of climate change: soil erosion and runoff from cropland, Soil and Water Conservation Society, Ankeny, 2003.

Syvitski, J. P. M., Kettner, A. J., Peckham, S. D., and Kao, S. J.: Predicting the flux of sediment to the coastal zone: application to the Lanyang watershed, Northern Taiwan, J. Coastal Res., 21, 580–587, 2005.

USDA-SCS (United States Department of Agriculture – Soil Conservation Service): National engineering handbook, Section 4 Hydrology, Chapter 4–10, USDA-SCS, Washington, USA, 1972.

Uhlenbrook, S., Seibert, J., Leibundgut, C., and Rodhe, A.: Prediction uncertainty of conceptual rainfall-runoff models caused by problems to identify model parameters and structure, Hydrolog. Sci. J., 44, 279–299, 1999.

Van Liew, M. W., Veith, T. L., Bosch, D. D., and Arnold, J. G.: Suitability of SWAT for the conservation effects assessment project: a comparison on the USDA-ARS experimental watersheds, J. Hydrol. Eng., 12, 173–189, 2007.

Vrugt, J. A., Diks, C. G. H., Gupta, H. V., Bouten, W., and Verstraten, J. M.: Improved treatment of uncertainty in hydrologic modeling: combining the strengths of global optimization and data assimilation, Water Resour. Res., 41, 1–17, https://doi.org/10.1029/2004WR003059, 2005.

Wang, J. J., Lu, X. X., and Kummu, M.: Sediment load estimates and variations in the Lower Mekong River, River Res. Appl., 27, 33–46, 2011.

Walling, D. E.: The changing sediment load of the Mekong River, Ambio, 37, 150–157, 2008.

Williams, J. R.: Flood routing with variable travel time or variable storage coefficients, T. ASAE, 12, 100–103, 1969.

Williams, J. R.: Sediment-yield prediction with universal equation using runoff energy factor, Present and Prospective Technology for Predicting Sediment Yield and Sources: Proceedings of the Sediment Yield Workshop, USDA Sedimentation Lab., Oxford, Mississippi, 28–30 November 1972, ARS-S-40, 244–252, 1975.

Xu, J. X.: Sediment flux to the sea as influenced by changing human activities and precipitation: example of the Yellow River, China, Environ. Manage., 31, 328–341, 2003.

Yang, J., Reichert, P., Abbaspour, K. C., Xia, J., and Yang, H.: Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China, J. Hydrol., 358, 1–23, 2008.

Zhang, X. C., Srinivasan, R., and Hao, F.: Predicting hydrologic response to climate change on the Luohe River Basin using the SWAT model, American Society of Agricultural and Biological Engineers, 50, 901–910, 2007.

Zhang, X. C. and Nearing, M. A.: Impact of climate change on soil erosion, runoff, and wheat productivity in central Oklahoma, Catena, 61, 185–195, 2005.

Zhu, Y.-M., Lu, X. X., and Zhou, Y.: Sediment flux sensitivity to climate change: a case study in the Longchuanjiang catchment of the upper Yangtze River, China, Global Planet. Change, 60, 429–442, 2008.

[-]

This item appears in the following Collection(s)

Show full item record