- -

A decision analysis framework for stakeholder involvement and learning in groundwater management

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A decision analysis framework for stakeholder involvement and learning in groundwater management

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Karjalainen, T.P. es_ES
dc.contributor.author Rossi, P. M. es_ES
dc.contributor.author Ala-aho, P. es_ES
dc.contributor.author Eskelinen, R. es_ES
dc.contributor.author Reinikainen, K. es_ES
dc.contributor.author Klove, B. es_ES
dc.contributor.author Pulido-Velazquez, M. es_ES
dc.contributor.author Yang, H. es_ES
dc.date.accessioned 2014-09-25T09:17:23Z
dc.date.available 2014-09-25T09:17:23Z
dc.date.issued 2013
dc.identifier.issn 1027-5606
dc.identifier.uri http://hdl.handle.net/10251/40212
dc.description.abstract [EN] Multi-criteria decision analysis (MCDA) methods are increasingly used to facilitate both rigorous analysis and stakeholder involvement in natural and water resource planning. Decision making in that context is often complex and multi-faceted with numerous trade-offs between social, environmental and economic impacts. However, practical applications of decision-support methods are often too technically oriented and hard to use, understand or interpret for all participants. The learning of articipants in these processes is seldom examined, even though successful deliberation depends on learning. This paper analyzes the potential of an interactive MCDA framework, the decision analysis interview (DAI) approach, for facilitating stakeholder involvement and learning in groundwater management. It evaluates the results of an MCDA process in assessing land-use management alternatives in a Finnish esker aquifer area where conflicting land uses affect the groundwater body and dependent ecosystems. In the assessment process, emphasis was placed on the interactive role of the MCDA tool in facilitating stakeholder participation and learning. The results confirmed that the structured decision analysis framework can foster learning and collaboration in a process where disputes and diverse interests are represented. Computer-aided interviews helped the participants to see how their preferences affected the desirability and ranking of alternatives. During the process, the participants knowledge and preferences evolved as they assess their initial knowledge with the help of fresh scientific information. The decision analysis process led to the opening of a dialogue, showing the overall picture of the problem context, and the critical issues for the further process. es_ES
dc.description.sponsorship This study was funded by the GENESIS project (contract number 226536) under the EU’s 7th Framework Programme and the Academy of Finland (project number 128377). es_ES
dc.language Inglés es_ES
dc.publisher European Geosciences Union (EGU) es_ES
dc.relation.ispartof Hydrology and Earth System Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Water-Resources Management es_ES
dc.subject Multiobjective Optimization es_ES
dc.subject Multicriteria Analysis es_ES
dc.subject Ecosystem Services es_ES
dc.subject Support-System es_ES
dc.subject River-Basin es_ES
dc.subject Catchment es_ES
dc.subject Participation es_ES
dc.subject Methodology es_ES
dc.subject Resolution es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title A decision analysis framework for stakeholder involvement and learning in groundwater management es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5194/hess-17-1-2013
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/226536/EU/Groundwater and dependent Ecosystems: NEw Scientific basIS on climate change and land-use impacts for the update of the EU Groundwater Directive/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AKA//128377/FI/Negotiating river ecosystems: Sociocultural valuation of ecosystem services in Northern river basins/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Karjalainen, T.; Rossi, PM.; Ala-Aho, P.; Eskelinen, R.; Reinikainen, K.; Klove, B.; Pulido-Velazquez, M.... (2013). A decision analysis framework for stakeholder involvement and learning in groundwater management. Hydrology and Earth System Sciences. 17:1-13. https://doi.org/10.5194/hess-17-1-2013 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.5194/hess-17-5141-2013 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.relation.senia 264124
dc.contributor.funder European Commission
dc.contributor.funder Academy of Finland
dc.description.references Abbaspour, K. C.: SWAT-CUP2: SWAT calibration and uncertainty programs – A user manual, Department of Systems Analysis, Integrated Assessment and Modelling (SIAM), Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland, 95 pp., 2008. es_ES
dc.description.references Abbaspour, K. C., Johnson, C. A., and Van Genuchten, M. T.: Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure, Vadose Zone J., 3, 1340–1352, 2004. es_ES
dc.description.references Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R.: Modelling hydrology and water quality in the Pre-Alpine/Alpine Thur watershed using SWAT, J. Hydrol., 333, 413–430, 2007. es_ES
dc.description.references Adam, J. C. and Lettenmaier, D. P.: Adjustment of global gridded precipitation for systematic bias, J. Geophys. Res., 108, 4257–4271, 2003. es_ES
dc.description.references Akhtar, M., Ahmad, N., and Booij, M. J.: The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios, J. Hydrol., 355, 148–163, 2008. es_ES
dc.description.references Arnold, J. G., Allen, P. M., and Bernhardt, G.: A comprehensive surface-groundwater flow model, J. Hydrol., 142, 47–69, 1993. es_ES
dc.description.references Arnold, J. G., Williams, J. R., and Maidment, D. R.: Continuous-time water and sediment routing model for large basins, J. Hydraul. Eng., 121, 171–183, 1995. es_ES
dc.description.references Arnold, J. G., Srinivasan, R., Muttiah, R., and Willams, J. R.: Large area hydrological modeling and assessment part I: model development, J. Am. Water Resour. As., 34, 73–89, 1998. es_ES
dc.description.references Babel, M. S., Shrestha, B., and Perret, S.: Hydrological impact of biofuel production: A case study of the Khlong Phlo Watershed in Thailand, Agr. Water Manage., 101, 8–26, 2011. es_ES
dc.description.references Benaman, J., Christine, A. S., and Douglas, A. H.: Calibration and validation of soil and water assessment tool on an agricultural watershed in upstate New York, J. Hydrol. Eng.-ASCE, 10, 363–374, 2005. es_ES
dc.description.references Bogaart, P. W., Van Balen, R. T., Kasse, C., and Vandenberghe, J.: Process-based modeling of fluvial system response to rapid climate change – I: model formulation and generic applications, Quaternary Sci. Rev., 22, 2077–2095, 2003. es_ES
dc.description.references Boorman, D. B.: Climate, Hydrochemistry and Economics of Surface-water Systems (CHESS): adding a European dimension to the catchment modeling experience developed under LOIS, Sci. Total Environ., 314–316, 411–437, 2003. es_ES
dc.description.references Cai, X., Wang, D., Zhu, T., and Ringler, C.: Assessing the regional variability of GCM simulations, Geophys. Res. Lett., 36, L02706, https://doi.org/10.1029/2008GL036443, 2009. es_ES
dc.description.references Chen, J., Brissette, F. P., and Leconte, R.: Uncertainty of downscaling method in quantifying the impact of climate change on hydrology, J. Hydrol., 401, 190–202, 2011. es_ES
dc.description.references Diaz-Nieto, J. and Wilby, R. L.: A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the river Thames, United Kingdom, Climate Change, 69, 245–268, 2005. es_ES
dc.description.references Di Baldassarre, G., Elshamy, M., van Griensven, A., Soliman, E., Kigobe, M., Ndomba, P., Mutemi, J., Mutua, F., Moges, S., Xuan, Y., Solomatine, D., and Uhlenbrook, S.: Future hydrology and climate in the River Nile basin: a review, Hydrolog. Sci. J., 56, 199–211, 2011. es_ES
dc.description.references Eastham, J., Mpelasoka, F., Mainuddin, M., Ticehurst, C., Dyce, P., Hodgson,G., Ali, R., and Kirby, M.: Mekong River Basin Water Resources Assessment: Impacts of Climate Change, CSIRO: Water for a Healthy Country National Research Flagship, CSIRO, Australia, 2008. es_ES
dc.description.references Elshamy, M., Di Baldassarre, G., and van Griensven, A.: Characterizing climate model uncertainty using an informal Bayesian GLUE framework: an application to the River Nile, J. Hydrol. Eng., online first: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000656, 2012. es_ES
dc.description.references Fowler, H. J., Blenkinsop, S., and Tebald, C.: Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modeling, Int. J. Climatol., 27, 1547–1578, 2007. es_ES
dc.description.references Fuchs, H. J.: Data availability for studies on effects of land-cover changes on water yield, sediment and nutrients load at catchments of the Lower Mekong Basin, Working Paper 09, MRC-GTZ Cooperation Programme, 2004. es_ES
dc.description.references Georgakakos, K. P., Seo, D., Gupta, H., Schaake, J., and Butts, M. B.: Towards the characterization of streamflow simulation uncertainty through multimodel ensembles, J. Hydrol., 298, 222–241, 2004. es_ES
dc.description.references Green, W. H. and Ampt, G. A.: Studies on soil physics, 1. The flow of air and water through soils, J. Agr. Sci., 4, 11–24, 1911. es_ES
dc.description.references Hanratty, M. P. and Stefan, H. G.: Simulating climate change effects in a Minnesota agricultural watershed, J. Environ. Qual., 27, 1524–1532, 1998. es_ES
dc.description.references Hardy, R. L.: Multiquadric equations of topology and other irregular surface, J. Geophys. Res., 76, 1905–1915, 1971. es_ES
dc.description.references Hargreaves, G. L., Hargreaves, G. H., and Riley, J. P.: Agricultural benefits for Senegal River Basin, J. Irrig. Drain. E.-ASCE, 111, 113–124, 1985. es_ES
dc.description.references Hay, L. E., Wilby, R. L., and Leavesly, H. H.: Comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States, J. Am. Water Resour. As., 36, 387–397, 2000. es_ES
dc.description.references Hoanh, C. T., Jirayoot, K., Lacombe, G., and Srinetr, V.: Impact of climate change and development on Mekong flow regime, First assessment-2009, MRC Technical Paper No. 29, Mekong River Comission, Vientiane, Lao PDR, 2010. es_ES
dc.description.references Hu, Y., Maskey, S., and Uhlenbrook, S.: Downscaling daily precipitation over the Yellow River source region in China: a comparison of three statistical downscaling methods, Theor. Appl. Climatol., Online ISSN: 1434-4483, Springer Vienna, https://doi.org/10.1007/s00704-012-0745-4, 2012. es_ES
dc.description.references Huth, R., Kysely, J., and Dubrovsky, M.: Time structure of observed, GCM-simulated, downscaled, and stochastically generator daily temperature series, J. Climate, 14, 4047–4061, 2001. es_ES
dc.description.references IPCC (Intergovernmental Panel on Climate Change): Climate change: AR4 synthesis report, Cambridge University Press, Cambridge, 2007. es_ES
dc.description.references Ishidaira, H., Ishikawa, Y., Funada, S., and Takeuchi, K.: Estimating the evolution of vegetation cover and its hydrological impact in the Mekong River basin in the 21st century, Hydrol. Process., 22, 1395–1405, 2008. es_ES
dc.description.references Jackson, W. L., Gebhardt, K., and Haveren, B. P. V.: Use of the modified universal soil loss equation for average annual sediment yield estimates on small rangeland drainage basin, in: Symposium on Drainage Basin Sediment Delivery, IASH, Albuquerque, New Mexico, USA, 1986. es_ES
dc.description.references Johnson, C. W., Gordon, N. D., and Hanson, C. L.: North-west rangeland sediment yield analysis by the MUSLE, Transactions of the American Society of Agricultural and Biological Engineers, 26, 1889–1895, 1986. es_ES
dc.description.references Johnston, R. and Kummu, M.: Water resources models in the Mekong basin: a review, Water Resour. Manage., 26, 429–455, 2012. es_ES
dc.description.references Keskinen, M.: Water resources development and impact assessment in the Mekong Basin: which way to go?. Ambio, 37, 193–198, 2008. es_ES
dc.description.references Kiem, A. S., Ishidaira, H., Hapuarachchi, H. P., Zhou, M. C., Hirabayahi, Y., and Takeuchi, K.: Future hydroclimatology of the Mekong River basin simulated useing the high-resolution Japan Meteorological Agency (JMA) AGCM, Hydrol. Process., 22, 1382–1394, 2008. es_ES
dc.description.references Kingston, D. G., Thompson, J. R., and Kite, G.: Uncertainty in climate change projections of discharge for the Mekong River Basin, Hydrol. Earth Syst. Sci., 15, 1459–1471, https://doi.org/10.5194/hess-15-1459-2011, 2011. es_ES
dc.description.references Kummu, M. and Varis, O.: Sediment-related impacts due to upstream reservoir trapping, the Lower Mekong River, Geomorphology, 85, 275–293, 2007. es_ES
dc.description.references Kummu, M., Keskinen, M., and Varis, O.: Modern Myths of the Mekong. A critical review of water and development concepts, principles and policies. Water & Development Publications – Helsinki University of Technology, 206 pp., 2008. es_ES
dc.description.references Lauri, H., de Moel, H., Ward, P. J., Räsänen, T. A., Keskinen, M., and Kummu, M.: Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge, Hydrol. Earth Syst. Sci. Discuss., 9, 6569–6614, https://doi.org/10.5194/hessd-9-6569-2012, 2012. es_ES
dc.description.references Li, Y., Chen, B.-M., Wang, Z.-G., and Peng, S.-L.: Effects of temperature change on water discharge, and sediment and nutrient loading in the lower Pearl River basin based on SWAT modeling, Hydrolog. Sci. J., 56, 68–83, 2011. es_ES
dc.description.references Lu, H.: Comparative analysis of the hydrological characteristics in Lancang Mekong River basin, International symposium of flooding in South Asia, Bangladesh, 1998. es_ES
dc.description.references Lu, X. X.: Spatial variability and temporal change of water discharge and sediment flux in the lower Jinsha tributary: impact of environmental changes, River Res. Appl., 21, 229–243, 2005. es_ES
dc.description.references Masih, I., Maskey, S., Uhlenbrook, S., and Smakhtin, V.: Impact of upstream changes in rain-fed agricultural water management on downstream flows in a semi-arid basin, Agr. Water Manage., 100, 36–44, https://doi.org/10.1016/j.agwat.2011.08.013, 2011a. es_ES
dc.description.references Masih, I., Maskey, S., Uhlenbrook, S., and Smakhtin, V.: Assessing the impact of areal precipitation input on streamflow simulations using the SWAT model, J. Am. Water Resour. As., 47, 179–195, https://doi.org/10.1111/j.1752-1688.2010.00502.x, 2011b. es_ES
dc.description.references Maurer, E. P.: Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios, Climatic Change, 82, 309–325, 2007. es_ES
dc.description.references Maurer, E. P., Adam, J. C., and Wood, A. W.: Climate model based consensus on the hydrologic impacts of climate change to the Rio Lempa basin of Central America, Hydrol. Earth Syst. Sci., 13, 183–194, https://doi.org/10.5194/hess-13-183-2009, 2009. es_ES
dc.description.references Mekong River Commission: MRC Work Programme, Mekong River commission, Vientiane, 2003. es_ES
dc.description.references Mekong River Commission: Overview of the Hydrology of the Mekong Basin, Mekong River Commission, Vientiane, 2005. es_ES
dc.description.references Mekong River Commission: Integrated Basin Flow Management, Social Team 2006 Final Report, Water utilization program-environment program, Mekong River Commission, Vientiane, 2006. es_ES
dc.description.references Mekong River Commission: Existing, Under Construction and Planned/Proposed Hydropower Projects in the Lower Mekong Basin, September 2008, Map produced by the Mekong River Commission (MRC), available at: http://www.mrcmekong.org/programmes/hydropower.htm (last access: 10 September 2011), 2008. es_ES
dc.description.references Menzel, L. and Burger, G.: Climate change scenarios and runoff response in the Mulde catchment (Southern Elbe, Germany), J. Hydrol., 267, 53–64, 2002. es_ES
dc.description.references Michael, A., Schmidt, J., Enke, W., Deutschlander, T., and Maltiz, G.: Impact of expected increase in precipitation intensities on soil loss results of comapritive model simulations, Catena, 61, 155–164, 2005. es_ES
dc.description.references Minville, M., Brissette, F., and Leconte, R.: Uncertainty of the impact of climate change on the hydrology of a Nordic watershed, J. Hydrol., 358, 70–83, 2008. es_ES
dc.description.references Monteith, J. L.: Evaporation and the environment, in: The State and Movement of Water in Living Organisms, 19th Symposia of the Society for Experimental Biology, Cambridge University Press, London, United Kingdom, 205–234, 1965. es_ES
dc.description.references Naik, P. K. and Jay, D. A.: Distinguishing human and climate influences on the Columbia River: changes in mean flow and sediment transport, J. Hydrol., 404, 259–277, 2011. es_ES
dc.description.references Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models. Part I – a discussion of principles, J. Hydrology, 10, 282–290, 1970. es_ES
dc.description.references Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and Water Assessment Tool theoretical documentation, version 2005, Texas Water Resources Institute, College Station, Texas, USA, 2005. es_ES
dc.description.references Nijssen, B., O'Donnell, G., Hamlet, A., and Lettenmaier, D.: Hydrologic sensitivity of global rivers to climate change, Climate Change, 50, 143–175, 2001. es_ES
dc.description.references O'Neal, M. R., Nearing, M. A., Vining, R. C., Southworth, J., and Pfeifer, R. A.: Climate change impacts on soil erosion in Midwest United States with changes in crop management, Catena, 61, 165–184, 2005. es_ES
dc.description.references Palutikof, J. P., Winkler, J. A., Goodess, C. M., and Andresen, J. A.: The simulation of daily temperature time series from GCM Output. Part 1: comparison of model data with observations, J. Climate, 10, 2497–2513, 1997. es_ES
dc.description.references Phan, D. B., Wu, C. C., and Hsieh, S. C.: Impact of climate change on stream discharge and sediment yield in Northern Viet Nam, Water Res., 38, 827–836, 2011. es_ES
dc.description.references Phomcha, P., Wirojanagud, P., Vangpaisal, T., and Thaveevouthti, T.: Predicting sediment discharge in an agricultural watershed: a case study of the Lam Sonthi watershed, Thailand, Science Asia, 37, 43–50, 2011. es_ES
dc.description.references Potter, C. and Haitt, S.: Modeling river flows and sediment dynamics for the Laguna de Santa Rosa watershed in Northern California, J. Soil Water Conserv., 64, 389–393, 2009. es_ES
dc.description.references Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat flux and evaporation using large-scale parameters, Mon. Weather Rev., 100, 81–92, 1972. es_ES
dc.description.references Prudhomme, C. and Davies, H.: Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 1: baseline climate, Climate Change, 93, 177–195, https://doi.org/10.1007/s10584-008-9464-3, 2009. es_ES
dc.description.references Prudhomme, C., Jakob, D., and Svensson, C.: Uncertainty and climate change impact on the flood regime of small UK catchments, J. Hydrol., 277, 1–23, 2003. es_ES
dc.description.references Pruski, F. E. and Nearing, M. A.: Climate-induced changes in erosion during the 21st century for eight US locations, Water Resour. Res., 38, 34.1–34.11, 2002. es_ES
dc.description.references Roberts, T.: Downstream ecological implications of China's Lancang Hydropower and Mekong Navigation Project, International Rivers Network (IRN), 2001. es_ES
dc.description.references Rossi, C. G., Srinivasan, R., Jirayoot, K., Duc, T. Le., Souvannabouth, P., Binh, N., and Gassman, P. W.: Hydrologic evaluation of the Lower Mekong River Basin with the soil and water assessment tool model, International Agricultural Engineering Journal, 18, 1–13, 2009. es_ES
dc.description.references Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., and Hauck, L. M.: Validation of the SWAT model on a large river basin with point and nonpoint sources, J. Am. Water Resour. As., 37, 1169–1188, 2001. es_ES
dc.description.references Schuol, J., Abbaspour, K. C., Srinivasan, R., and Yang, H.: Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model, J. Hydrol., 352, 30–49, 2008. es_ES
dc.description.references Semenov, M. A., Brooks, R. J., Barrow, E. M., and Richardson, C. W.: Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates, Climate Res., 10, 95–107, 1998. es_ES
dc.description.references Setegn, S. G., Dargahi, B., Srivivasan, R., and Melesse, A. M.: Modeling of sediment yield from Anjeni-Gauged watershed, Ethiopia using SWAT model, J. Am. Water Res. As., 46, 514–526, 2010. es_ES
dc.description.references Shaw, E. H. and Lynn, P. P.: Areal rainfall using two surface fitting techniques, Bulletin of the International Association and Hydrological Science, XVII, 4–12, 1972. es_ES
dc.description.references SWCS: Conservation implications of climate change: soil erosion and runoff from cropland, Soil and Water Conservation Society, Ankeny, 2003. es_ES
dc.description.references Syvitski, J. P. M., Kettner, A. J., Peckham, S. D., and Kao, S. J.: Predicting the flux of sediment to the coastal zone: application to the Lanyang watershed, Northern Taiwan, J. Coastal Res., 21, 580–587, 2005. es_ES
dc.description.references USDA-SCS (United States Department of Agriculture – Soil Conservation Service): National engineering handbook, Section 4 Hydrology, Chapter 4–10, USDA-SCS, Washington, USA, 1972. es_ES
dc.description.references Uhlenbrook, S., Seibert, J., Leibundgut, C., and Rodhe, A.: Prediction uncertainty of conceptual rainfall-runoff models caused by problems to identify model parameters and structure, Hydrolog. Sci. J., 44, 279–299, 1999. es_ES
dc.description.references Van Liew, M. W., Veith, T. L., Bosch, D. D., and Arnold, J. G.: Suitability of SWAT for the conservation effects assessment project: a comparison on the USDA-ARS experimental watersheds, J. Hydrol. Eng., 12, 173–189, 2007. es_ES
dc.description.references Vrugt, J. A., Diks, C. G. H., Gupta, H. V., Bouten, W., and Verstraten, J. M.: Improved treatment of uncertainty in hydrologic modeling: combining the strengths of global optimization and data assimilation, Water Resour. Res., 41, 1–17, https://doi.org/10.1029/2004WR003059, 2005. es_ES
dc.description.references Wang, J. J., Lu, X. X., and Kummu, M.: Sediment load estimates and variations in the Lower Mekong River, River Res. Appl., 27, 33–46, 2011. es_ES
dc.description.references Walling, D. E.: The changing sediment load of the Mekong River, Ambio, 37, 150–157, 2008. es_ES
dc.description.references Williams, J. R.: Flood routing with variable travel time or variable storage coefficients, T. ASAE, 12, 100–103, 1969. es_ES
dc.description.references Williams, J. R.: Sediment-yield prediction with universal equation using runoff energy factor, Present and Prospective Technology for Predicting Sediment Yield and Sources: Proceedings of the Sediment Yield Workshop, USDA Sedimentation Lab., Oxford, Mississippi, 28–30 November 1972, ARS-S-40, 244–252, 1975. es_ES
dc.description.references Xu, J. X.: Sediment flux to the sea as influenced by changing human activities and precipitation: example of the Yellow River, China, Environ. Manage., 31, 328–341, 2003. es_ES
dc.description.references Yang, J., Reichert, P., Abbaspour, K. C., Xia, J., and Yang, H.: Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China, J. Hydrol., 358, 1–23, 2008. es_ES
dc.description.references Zhang, X. C., Srinivasan, R., and Hao, F.: Predicting hydrologic response to climate change on the Luohe River Basin using the SWAT model, American Society of Agricultural and Biological Engineers, 50, 901–910, 2007. es_ES
dc.description.references Zhang, X. C. and Nearing, M. A.: Impact of climate change on soil erosion, runoff, and wheat productivity in central Oklahoma, Catena, 61, 185–195, 2005. es_ES
dc.description.references Zhu, Y.-M., Lu, X. X., and Zhou, Y.: Sediment flux sensitivity to climate change: a case study in the Longchuanjiang catchment of the upper Yangtze River, China, Global Planet. Change, 60, 429–442, 2008. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem