- -

Generalized Contraction and Invariant Approximation Resultson Nonconvex Subsets of Normed Spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generalized Contraction and Invariant Approximation Resultson Nonconvex Subsets of Normed Spaces

Mostrar el registro completo del ítem

Abbas, M.; Ali, B.; Romaguera Bonilla, S. (2014). Generalized Contraction and Invariant Approximation Resultson Nonconvex Subsets of Normed Spaces. Abstract and Applied Analysis. 2014:1-5. https://doi.org/10.1155/2014/391952

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/40319

Ficheros en el ítem

Metadatos del ítem

Título: Generalized Contraction and Invariant Approximation Resultson Nonconvex Subsets of Normed Spaces
Autor: Abbas, Mujahid Ali, Basit Romaguera Bonilla, Salvador
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Fecha difusión:
Resumen:
Wardowski (2012) introduced a new type of contractive mapping and proved a fixed point result in complete metric spaces as a generalization of Banach contraction principle. In this paper, we introduce a notion of generalized ...[+]
Palabras clave: Fixed points theorems , Banach spaces , Metric spaces , Mappings
Derechos de uso: Reserva de todos los derechos
Fuente:
Abstract and Applied Analysis. (issn: 1085-3375 )
DOI: 10.1155/2014/391952
Editorial:
Hindawi Publishing Corporation
Versión del editor: http://dx.doi.org/10.1155/2014/391952
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-06-12-SP20120471/
Agradecimientos:
The authors are very grateful to the referees for their valuable comments and suggestions, and, in particular, to one of them for calling our attention on the crucial fact stated in the first part of Remark 5 and for the ...[+]
Tipo: Artículo

References

Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3, 133-181. doi:10.4064/fm-3-1-133-181

Arandjelović, I., Kadelburg, Z., & Radenović, S. (2011). Boyd–Wong-type common fixed point results in cone metric spaces. Applied Mathematics and Computation, 217(17), 7167-7171. doi:10.1016/j.amc.2011.01.113

Boyd, D. W., & Wong, J. S. W. (1969). On nonlinear contractions. Proceedings of the American Mathematical Society, 20(2), 458-458. doi:10.1090/s0002-9939-1969-0239559-9 [+]
Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3, 133-181. doi:10.4064/fm-3-1-133-181

Arandjelović, I., Kadelburg, Z., & Radenović, S. (2011). Boyd–Wong-type common fixed point results in cone metric spaces. Applied Mathematics and Computation, 217(17), 7167-7171. doi:10.1016/j.amc.2011.01.113

Boyd, D. W., & Wong, J. S. W. (1969). On nonlinear contractions. Proceedings of the American Mathematical Society, 20(2), 458-458. doi:10.1090/s0002-9939-1969-0239559-9

Huang, L.-G., & Zhang, X. (2007). Cone metric spaces and fixed point theorems of contractive mappings. Journal of Mathematical Analysis and Applications, 332(2), 1468-1476. doi:10.1016/j.jmaa.2005.03.087

Rakotch, E. (1962). A note on contractive mappings. Proceedings of the American Mathematical Society, 13(3), 459-459. doi:10.1090/s0002-9939-1962-0148046-1

Tarafdar, E. (1974). An approach to fixed-point theorems on uniform spaces. Transactions of the American Mathematical Society, 191, 209-209. doi:10.1090/s0002-9947-1974-0362283-5

Dix, J. G., & Karakostas, G. L. (2009). A fixed-point theorem for S-type operators on Banach spaces and its applications to boundary-value problems. Nonlinear Analysis: Theory, Methods & Applications, 71(9), 3872-3880. doi:10.1016/j.na.2009.02.057

Latrach, K., Aziz Taoudi, M., & Zeghal, A. (2006). Some fixed point theorems of the Schauder and the Krasnosel’skii type and application to nonlinear transport equations. Journal of Differential Equations, 221(1), 256-271. doi:10.1016/j.jde.2005.04.010

Meinardus, G. (1963). Invarianz bei linearen Approximationen. Archive for Rational Mechanics and Analysis, 14(1), 301-303. doi:10.1007/bf00250708

Habiniak, L. (1989). Fixed point theorems and invariant approximations. Journal of Approximation Theory, 56(3), 241-244. doi:10.1016/0021-9045(89)90113-5

Hicks, T. ., & Humphries, M. . (1982). A note on fixed-point theorems. Journal of Approximation Theory, 34(3), 221-225. doi:10.1016/0021-9045(82)90012-0

Singh, S. . (1979). An application of a fixed-point theorem to approximation theory. Journal of Approximation Theory, 25(1), 89-90. doi:10.1016/0021-9045(79)90036-4

Subrahmanyam, P. . (1977). An application of a fixed point theorem to best approximation. Journal of Approximation Theory, 20(2), 165-172. doi:10.1016/0021-9045(77)90070-3

Wardowski, D. (2012). Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory and Applications, 2012(1). doi:10.1186/1687-1812-2012-94

Abbas, M., Ali, B., & Romaguera, S. (2013). Fixed and periodic points of generalized contractions in metric spaces. Fixed Point Theory and Applications, 2013(1), 243. doi:10.1186/1687-1812-2013-243

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem