Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3, 133-181. doi:10.4064/fm-3-1-133-181
Arandjelović, I., Kadelburg, Z., & Radenović, S. (2011). Boyd–Wong-type common fixed point results in cone metric spaces. Applied Mathematics and Computation, 217(17), 7167-7171. doi:10.1016/j.amc.2011.01.113
Boyd, D. W., & Wong, J. S. W. (1969). On nonlinear contractions. Proceedings of the American Mathematical Society, 20(2), 458-458. doi:10.1090/s0002-9939-1969-0239559-9
[+]
Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3, 133-181. doi:10.4064/fm-3-1-133-181
Arandjelović, I., Kadelburg, Z., & Radenović, S. (2011). Boyd–Wong-type common fixed point results in cone metric spaces. Applied Mathematics and Computation, 217(17), 7167-7171. doi:10.1016/j.amc.2011.01.113
Boyd, D. W., & Wong, J. S. W. (1969). On nonlinear contractions. Proceedings of the American Mathematical Society, 20(2), 458-458. doi:10.1090/s0002-9939-1969-0239559-9
Huang, L.-G., & Zhang, X. (2007). Cone metric spaces and fixed point theorems of contractive mappings. Journal of Mathematical Analysis and Applications, 332(2), 1468-1476. doi:10.1016/j.jmaa.2005.03.087
Rakotch, E. (1962). A note on contractive mappings. Proceedings of the American Mathematical Society, 13(3), 459-459. doi:10.1090/s0002-9939-1962-0148046-1
Tarafdar, E. (1974). An approach to fixed-point theorems on uniform spaces. Transactions of the American Mathematical Society, 191, 209-209. doi:10.1090/s0002-9947-1974-0362283-5
Dix, J. G., & Karakostas, G. L. (2009). A fixed-point theorem for S-type operators on Banach spaces and its applications to boundary-value problems. Nonlinear Analysis: Theory, Methods & Applications, 71(9), 3872-3880. doi:10.1016/j.na.2009.02.057
Latrach, K., Aziz Taoudi, M., & Zeghal, A. (2006). Some fixed point theorems of the Schauder and the Krasnosel’skii type and application to nonlinear transport equations. Journal of Differential Equations, 221(1), 256-271. doi:10.1016/j.jde.2005.04.010
Meinardus, G. (1963). Invarianz bei linearen Approximationen. Archive for Rational Mechanics and Analysis, 14(1), 301-303. doi:10.1007/bf00250708
Habiniak, L. (1989). Fixed point theorems and invariant approximations. Journal of Approximation Theory, 56(3), 241-244. doi:10.1016/0021-9045(89)90113-5
Hicks, T. ., & Humphries, M. . (1982). A note on fixed-point theorems. Journal of Approximation Theory, 34(3), 221-225. doi:10.1016/0021-9045(82)90012-0
Singh, S. . (1979). An application of a fixed-point theorem to approximation theory. Journal of Approximation Theory, 25(1), 89-90. doi:10.1016/0021-9045(79)90036-4
Subrahmanyam, P. . (1977). An application of a fixed point theorem to best approximation. Journal of Approximation Theory, 20(2), 165-172. doi:10.1016/0021-9045(77)90070-3
Wardowski, D. (2012). Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory and Applications, 2012(1). doi:10.1186/1687-1812-2012-94
Abbas, M., Ali, B., & Romaguera, S. (2013). Fixed and periodic points of generalized contractions in metric spaces. Fixed Point Theory and Applications, 2013(1), 243. doi:10.1186/1687-1812-2013-243
[-]