- -

A Stochastic Model for Population and Well-Being Dynamics

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Stochastic Model for Population and Well-Being Dynamics

Show full item record

Sanz, MT.; Micó Ruiz, JC.; Caselles, A.; Soler Fernández, D. (2014). A Stochastic Model for Population and Well-Being Dynamics. Journal of Mathematical Sociology. 38(2):75-94. doi:10.1080/0022250X.2011.629064

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/40320

Files in this item

Item Metadata

Title: A Stochastic Model for Population and Well-Being Dynamics
Author: Sanz, María T. Micó Ruiz, Juan Carlos Caselles, Antonio Soler Fernández, David
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
This article presents a stochastic dynamic model to study the demographic evolution per sexes and the corresponding well-being of a general human population. The main model variables are population per sexes and well-being. ...[+]
Subjects: Gender-Related Development Index (GDI) , Human population dynamics , Stochastic model , United Nations' well-being
Copyrigths: Cerrado
Source:
Journal of Mathematical Sociology. (issn: 0022-250X )
DOI: 10.1080/0022250X.2011.629064
Publisher:
Taylor & Francis (Routledge): SSH Titles
Publisher version: http://dx.doi.org/10.1080/0022250X.2011.629064
Type: Artículo

References

Alho , J. M. & Spencer , B. D. ( 2005 ).Statistical demography and forecasting(pp. 166 – 193 ). Berlin , Germany : Springer .

Almeder , C. ( 2004 ). Solution methods for age-structured optimal control models with feedback . In I. Lirkov , S. Margenov , J. Wasniewski , & P. Yalamov (Eds.),Large-scale scientific computing(Lecture Notes in Computer Science, Vol. 2907 , pp. 197–203). Berlin , Germany : Springer .

Anand , S. & Sen , A. ( 1994 ).Human development index: Methodology and measurement(Human Development Report Office Occasional Paper 12). New York , NY : Human Development Report Office . [+]
Alho , J. M. & Spencer , B. D. ( 2005 ).Statistical demography and forecasting(pp. 166 – 193 ). Berlin , Germany : Springer .

Almeder , C. ( 2004 ). Solution methods for age-structured optimal control models with feedback . In I. Lirkov , S. Margenov , J. Wasniewski , & P. Yalamov (Eds.),Large-scale scientific computing(Lecture Notes in Computer Science, Vol. 2907 , pp. 197–203). Berlin , Germany : Springer .

Anand , S. & Sen , A. ( 1994 ).Human development index: Methodology and measurement(Human Development Report Office Occasional Paper 12). New York , NY : Human Development Report Office .

Park, E. J., Iannelli, M., Kim, M. Y., & Anita, S. (1998). Optimal Harvesting for Periodic Age-Dependent Population Dynamics. SIAM Journal on Applied Mathematics, 58(5), 1648-1666. doi:10.1137/s0036139996301180

Bacaër, N., Abdurahman, X., & Ye, J. (2006). Modeling the HIV/AIDS Epidemic Among Injecting Drug Users and Sex Workers in Kunming, China. Bulletin of Mathematical Biology, 68(3), 525-550. doi:10.1007/s11538-005-9051-y

Barbu, V., Iannelli, M., & Martcheva, M. (2001). On the Controllability of the Lotka–McKendrick Model of Population Dynamics. Journal of Mathematical Analysis and Applications, 253(1), 142-165. doi:10.1006/jmaa.2000.7075

CASELLES, A. (1992). STRUCTURE AND BEHAVIOR IN GENERAL SYSTEMS THEORY. Cybernetics and Systems, 23(6), 549-560. doi:10.1080/01969729208927481

CASELLES, A. (1993). SYSTEMS DECOMPOSITION AND COUPLING. Cybernetics and Systems, 24(4), 305-323. doi:10.1080/01969729308961712

CASELLES, A. (1994). IMPROVEMENTS IN THE SYSTEMS-BASED MODELS GENERATOR SIGEM. Cybernetics and Systems, 25(1), 81-103. doi:10.1080/01969729408902317

Caselles , A. , Micó , J. C. , Soler , D. & Sanz , M. T. ( 2008 ). Population growth and social well-being: A dynamic model approach. In Associação Portuguesa de Complexidade Sistémica (Ed.),Proceedings of the 7th Congress of the UES (Systems Science European Union). Lisbon, Portugal: Associação Portuguesa de Complexidade Sistémica. Retrieved from http://www.afscet.asso.fr/resSystemica/Lisboa08/entete08.htm .

Caswell, H., & Weeks, D. E. (1986). Two-Sex Models: Chaos, Extinction, and Other Dynamic Consequences of Sex. The American Naturalist, 128(5), 707-735. doi:10.1086/284598

Chowdhury, M., & Allen, E. J. (2001). A stochastic continuous-time age-structured population model. Nonlinear Analysis: Theory, Methods & Applications, 47(3), 1477-1488. doi:10.1016/s0362-546x(01)00283-8

Clemons, C. B., Hariharan, S. I., & Quinn, D. D. (2001). Amplitude Equations for Time-Dependent Solutions of the McKendrick Equations. SIAM Journal on Applied Mathematics, 62(2), 684-705. doi:10.1137/s003613990037813x

Djidjeli, K., Price, W. G., Temarel, P., & Twizell, E. H. (1998). Partially implicit schemes for the numerical solutions of some non-linear differential equations. Applied Mathematics and Computation, 96(2-3), 177-207. doi:10.1016/s0096-3003(97)10133-3

Farkas, J. Z. (2004). Stability conditions for the non-linear McKendrick equations. Applied Mathematics and Computation, 156(3), 771-777. doi:10.1016/j.amc.2003.06.019

Feichtinger, G., Tragler, G., & Veliov, V. M. (2003). Optimality conditions for age-structured control systems. Journal of Mathematical Analysis and Applications, 288(1), 47-68. doi:10.1016/j.jmaa.2003.07.001

Guo, B.-Z., & Sun, B. (2005). Numerical solution to the optimal birth feedback control of a population dynamics: viscosity solution approach. Optimal Control Applications and Methods, 26(5), 229-254. doi:10.1002/oca.759

Hagerty, M. R., & Land, K. C. (2007). Constructing Summary Indices of Quality of Life. Sociological Methods & Research, 35(4), 455-496. doi:10.1177/0049124106292354

Inaba, H. (2001). Kermack and McKendrick revisited: The variable susceptibility model for infectious diseases. Japan Journal of Industrial and Applied Mathematics, 18(2), 273-292. doi:10.1007/bf03168575

KIM, M.-Y. (2006). DISCONTINUOUS GALERKIN METHODS FOR THE LOTKA–MCKENDRICK EQUATION WITH FINITE LIFE-SPAN. Mathematical Models and Methods in Applied Sciences, 16(02), 161-176. doi:10.1142/s0218202506001108

Land, K. C., Yang, Y., & Zeng, Y. (s. f.). Mathematical Demography. Handbook of Population, 659-717. doi:10.1007/0-387-23106-4_23

Letellier, C., Elaydi, S., Aguirre, L. A., & Alaoui, A. (2004). Difference equations versus differential equations, a possible equivalence for the Rössler system? Physica D: Nonlinear Phenomena, 195(1-2), 29-49. doi:10.1016/j.physd.2004.02.007

Marchetti, C., Meyer, P. S., & Ausubel, J. H. (1996). Human population dynamics revisited with the logistic model: How much can be modeled and predicted? Technological Forecasting and Social Change, 52(1), 1-30. doi:10.1016/0040-1625(96)00001-7

MICÓ, J. C., SOLER, D., & CASELLES, A. (2006). Age-Structured Human Population Dynamics. The Journal of Mathematical Sociology, 30(1), 1-31. doi:10.1080/00222500500323143

MICÓ, J. C., CASELLES, A., SOLER, D., SANZ, T., & MARTÍNEZ, E. (2008). A Side-by-Side Single Sex Age-Structured Human Population Dynamic Model: Exact Solution and Model Validation. The Journal of Mathematical Sociology, 32(4), 285-321. doi:10.1080/00222500802352758

MISCHLER, S., PERTHAME, B., & RYZHIK, L. (2002). STABILITY IN A NONLINEAR POPULATION MATURATION MODEL. Mathematical Models and Methods in Applied Sciences, 12(12), 1751-1772. doi:10.1142/s021820250200232x

Murphy, L. F., & Smith, S. J. (1991). Maximum sustainable yield of a nonlinear population model with continuous age structure. Mathematical Biosciences, 104(2), 259-270. doi:10.1016/0025-5564(91)90064-p

Noymer, A. (2001). The transmission and persistence of ‘urban legends’: Sociological application of age‐structured epidemic models. The Journal of Mathematical Sociology, 25(3), 299-323. doi:10.1080/0022250x.2001.9990256

Patten, S. B. (1999). Epidemics of violence. Medical Hypotheses, 53(3), 217-220. doi:10.1054/mehy.1998.0748

Pollak, R. A. (1986). A Reformulation of the Two-Sex Problem. Demography, 23(2), 247. doi:10.2307/2061619

Pollak, R. A. (1990). Two-Sex Demographic Models. Journal of Political Economy, 98(2), 399-420. doi:10.1086/261683

Schoen, R. (1988). Modeling Multigroup Populations. The Springer Series on Demographic Methods and Population Analysis. doi:10.1007/978-1-4899-2055-3

Segarra, J., Jeger, M. J., & van den Bosch, F. (2001). Epidemic Dynamics and Patterns of Plant Diseases. Phytopathology, 91(10), 1001-1010. doi:10.1094/phyto.2001.91.10.1001

Takada, T., & Caswell, H. (1997). Optimal Size at Maturity in Size-Structured Populations. Journal of Theoretical Biology, 187(1), 81-93. doi:10.1006/jtbi.1997.0420

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record