- -

A Stochastic Model for Population and Well-Being Dynamics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Stochastic Model for Population and Well-Being Dynamics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanz, María T. es_ES
dc.contributor.author Micó Ruiz, Juan Carlos es_ES
dc.contributor.author Caselles, Antonio es_ES
dc.contributor.author Soler Fernández, David es_ES
dc.date.accessioned 2014-09-26T13:00:27Z
dc.date.available 2014-09-26T13:00:27Z
dc.date.issued 2014-03-25
dc.identifier.issn 0022-250X
dc.identifier.uri http://hdl.handle.net/10251/40320
dc.description.abstract This article presents a stochastic dynamic model to study the demographic evolution per sexes and the corresponding well-being of a general human population. The main model variables are population per sexes and well-being. The considered well-being variable is the Gender-Related Development Index (GDI), a United Nations index. The model's objectives are to improve future well-being and to reach a stable population in a country. The application case consists of adapting, validating, and using the model for Spain in the 2000–2006 period. Some instance strategies have been tested in different scenarios for the 2006–2015 period to meet these objectives by calculating the reliability of the results. The optimal strategy is “government invests more in education and maintains the present health investment tendency.” es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis (Routledge): SSH Titles es_ES
dc.relation.ispartof Journal of Mathematical Sociology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Gender-Related Development Index (GDI) es_ES
dc.subject Human population dynamics es_ES
dc.subject Stochastic model es_ES
dc.subject United Nations' well-being es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A Stochastic Model for Population and Well-Being Dynamics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/0022250X.2011.629064
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Sanz, MT.; Micó Ruiz, JC.; Caselles, A.; Soler Fernández, D. (2014). A Stochastic Model for Population and Well-Being Dynamics. Journal of Mathematical Sociology. 38(2):75-94. doi:10.1080/0022250X.2011.629064 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/0022250X.2011.629064 es_ES
dc.description.upvformatpinicio 75 es_ES
dc.description.upvformatpfin 94 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 38 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 265356
dc.description.references Alho , J. M. & Spencer , B. D. ( 2005 ).Statistical demography and forecasting(pp. 166 – 193 ). Berlin , Germany : Springer . es_ES
dc.description.references Almeder , C. ( 2004 ). Solution methods for age-structured optimal control models with feedback . In I. Lirkov , S. Margenov , J. Wasniewski , & P. Yalamov (Eds.),Large-scale scientific computing(Lecture Notes in Computer Science, Vol. 2907 , pp. 197–203). Berlin , Germany : Springer . es_ES
dc.description.references Anand , S. & Sen , A. ( 1994 ).Human development index: Methodology and measurement(Human Development Report Office Occasional Paper 12). New York , NY : Human Development Report Office . es_ES
dc.description.references Park, E. J., Iannelli, M., Kim, M. Y., & Anita, S. (1998). Optimal Harvesting for Periodic Age-Dependent Population Dynamics. SIAM Journal on Applied Mathematics, 58(5), 1648-1666. doi:10.1137/s0036139996301180 es_ES
dc.description.references Bacaër, N., Abdurahman, X., & Ye, J. (2006). Modeling the HIV/AIDS Epidemic Among Injecting Drug Users and Sex Workers in Kunming, China. Bulletin of Mathematical Biology, 68(3), 525-550. doi:10.1007/s11538-005-9051-y es_ES
dc.description.references Barbu, V., Iannelli, M., & Martcheva, M. (2001). On the Controllability of the Lotka–McKendrick Model of Population Dynamics. Journal of Mathematical Analysis and Applications, 253(1), 142-165. doi:10.1006/jmaa.2000.7075 es_ES
dc.description.references CASELLES, A. (1992). STRUCTURE AND BEHAVIOR IN GENERAL SYSTEMS THEORY. Cybernetics and Systems, 23(6), 549-560. doi:10.1080/01969729208927481 es_ES
dc.description.references CASELLES, A. (1993). SYSTEMS DECOMPOSITION AND COUPLING. Cybernetics and Systems, 24(4), 305-323. doi:10.1080/01969729308961712 es_ES
dc.description.references CASELLES, A. (1994). IMPROVEMENTS IN THE SYSTEMS-BASED MODELS GENERATOR SIGEM. Cybernetics and Systems, 25(1), 81-103. doi:10.1080/01969729408902317 es_ES
dc.description.references Caselles , A. , Micó , J. C. , Soler , D. & Sanz , M. T. ( 2008 ). Population growth and social well-being: A dynamic model approach. In Associação Portuguesa de Complexidade Sistémica (Ed.),Proceedings of the 7th Congress of the UES (Systems Science European Union). Lisbon, Portugal: Associação Portuguesa de Complexidade Sistémica. Retrieved from http://www.afscet.asso.fr/resSystemica/Lisboa08/entete08.htm . es_ES
dc.description.references Caswell, H., & Weeks, D. E. (1986). Two-Sex Models: Chaos, Extinction, and Other Dynamic Consequences of Sex. The American Naturalist, 128(5), 707-735. doi:10.1086/284598 es_ES
dc.description.references Chowdhury, M., & Allen, E. J. (2001). A stochastic continuous-time age-structured population model. Nonlinear Analysis: Theory, Methods & Applications, 47(3), 1477-1488. doi:10.1016/s0362-546x(01)00283-8 es_ES
dc.description.references Clemons, C. B., Hariharan, S. I., & Quinn, D. D. (2001). Amplitude Equations for Time-Dependent Solutions of the McKendrick Equations. SIAM Journal on Applied Mathematics, 62(2), 684-705. doi:10.1137/s003613990037813x es_ES
dc.description.references Djidjeli, K., Price, W. G., Temarel, P., & Twizell, E. H. (1998). Partially implicit schemes for the numerical solutions of some non-linear differential equations. Applied Mathematics and Computation, 96(2-3), 177-207. doi:10.1016/s0096-3003(97)10133-3 es_ES
dc.description.references Farkas, J. Z. (2004). Stability conditions for the non-linear McKendrick equations. Applied Mathematics and Computation, 156(3), 771-777. doi:10.1016/j.amc.2003.06.019 es_ES
dc.description.references Feichtinger, G., Tragler, G., & Veliov, V. M. (2003). Optimality conditions for age-structured control systems. Journal of Mathematical Analysis and Applications, 288(1), 47-68. doi:10.1016/j.jmaa.2003.07.001 es_ES
dc.description.references Guo, B.-Z., & Sun, B. (2005). Numerical solution to the optimal birth feedback control of a population dynamics: viscosity solution approach. Optimal Control Applications and Methods, 26(5), 229-254. doi:10.1002/oca.759 es_ES
dc.description.references Hagerty, M. R., & Land, K. C. (2007). Constructing Summary Indices of Quality of Life. Sociological Methods & Research, 35(4), 455-496. doi:10.1177/0049124106292354 es_ES
dc.description.references Inaba, H. (2001). Kermack and McKendrick revisited: The variable susceptibility model for infectious diseases. Japan Journal of Industrial and Applied Mathematics, 18(2), 273-292. doi:10.1007/bf03168575 es_ES
dc.description.references KIM, M.-Y. (2006). DISCONTINUOUS GALERKIN METHODS FOR THE LOTKA–MCKENDRICK EQUATION WITH FINITE LIFE-SPAN. Mathematical Models and Methods in Applied Sciences, 16(02), 161-176. doi:10.1142/s0218202506001108 es_ES
dc.description.references Land, K. C., Yang, Y., & Zeng, Y. (s. f.). Mathematical Demography. Handbook of Population, 659-717. doi:10.1007/0-387-23106-4_23 es_ES
dc.description.references Letellier, C., Elaydi, S., Aguirre, L. A., & Alaoui, A. (2004). Difference equations versus differential equations, a possible equivalence for the Rössler system? Physica D: Nonlinear Phenomena, 195(1-2), 29-49. doi:10.1016/j.physd.2004.02.007 es_ES
dc.description.references Marchetti, C., Meyer, P. S., & Ausubel, J. H. (1996). Human population dynamics revisited with the logistic model: How much can be modeled and predicted? Technological Forecasting and Social Change, 52(1), 1-30. doi:10.1016/0040-1625(96)00001-7 es_ES
dc.description.references MICÓ, J. C., SOLER, D., & CASELLES, A. (2006). Age-Structured Human Population Dynamics. The Journal of Mathematical Sociology, 30(1), 1-31. doi:10.1080/00222500500323143 es_ES
dc.description.references MICÓ, J. C., CASELLES, A., SOLER, D., SANZ, T., & MARTÍNEZ, E. (2008). A Side-by-Side Single Sex Age-Structured Human Population Dynamic Model: Exact Solution and Model Validation. The Journal of Mathematical Sociology, 32(4), 285-321. doi:10.1080/00222500802352758 es_ES
dc.description.references MISCHLER, S., PERTHAME, B., & RYZHIK, L. (2002). STABILITY IN A NONLINEAR POPULATION MATURATION MODEL. Mathematical Models and Methods in Applied Sciences, 12(12), 1751-1772. doi:10.1142/s021820250200232x es_ES
dc.description.references Murphy, L. F., & Smith, S. J. (1991). Maximum sustainable yield of a nonlinear population model with continuous age structure. Mathematical Biosciences, 104(2), 259-270. doi:10.1016/0025-5564(91)90064-p es_ES
dc.description.references Noymer, A. (2001). The transmission and persistence of ‘urban legends’: Sociological application of age‐structured epidemic models. The Journal of Mathematical Sociology, 25(3), 299-323. doi:10.1080/0022250x.2001.9990256 es_ES
dc.description.references Patten, S. B. (1999). Epidemics of violence. Medical Hypotheses, 53(3), 217-220. doi:10.1054/mehy.1998.0748 es_ES
dc.description.references Pollak, R. A. (1986). A Reformulation of the Two-Sex Problem. Demography, 23(2), 247. doi:10.2307/2061619 es_ES
dc.description.references Pollak, R. A. (1990). Two-Sex Demographic Models. Journal of Political Economy, 98(2), 399-420. doi:10.1086/261683 es_ES
dc.description.references Schoen, R. (1988). Modeling Multigroup Populations. The Springer Series on Demographic Methods and Population Analysis. doi:10.1007/978-1-4899-2055-3 es_ES
dc.description.references Segarra, J., Jeger, M. J., & van den Bosch, F. (2001). Epidemic Dynamics and Patterns of Plant Diseases. Phytopathology, 91(10), 1001-1010. doi:10.1094/phyto.2001.91.10.1001 es_ES
dc.description.references Takada, T., & Caswell, H. (1997). Optimal Size at Maturity in Size-Structured Populations. Journal of Theoretical Biology, 187(1), 81-93. doi:10.1006/jtbi.1997.0420 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem