- -

Tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author LICAUSI, MARIE-PIERRE es_ES
dc.contributor.author Igual Muñoz, Anna Neus es_ES
dc.contributor.author Amigó Borrás, Vicente es_ES
dc.date.accessioned 2014-09-26T13:59:28Z
dc.date.available 2014-09-26T13:59:28Z
dc.date.issued 2013-09-19
dc.identifier.issn 0022-3727
dc.identifier.uri http://hdl.handle.net/10251/40328
dc.description.abstract Titanium and its alloys has been widely used for the design of dental implants because of its biocompatibility, mechanical properties and corrosion resistance. The powder-metallurgy process is a promising alternative to the casting fabrication process of titanium alloys for bone implants design as the porous structure mimics the natural bone structures, allowing the bone to grow into the pores which results in a better fixation of the artificial implant. However, under in vivo conditions the implants are subjected to tribocorrosion phenomenon, which consists in the degradation mechanisms due to the combined effect of wear and corrosion. The aim of this study is to evaluate the tribocorrosion behaviour of cast and sintered Ti6Al4V biomedical alloy for dental applications using the cast material as reference. Titanium samples were tested in artificial human saliva solution with three different pHs (3, 6, 9) and in an acidic saliva with 1000 ppm fluorides (AS-3-1000F−) by different electrochemical techniques (potentiodynamic curves, potentiostatic tests and tribo-electrochemical tests). Cast and sintered titanium alloys exhibit the same tribocorrosion mechanisms in AS independently of the pH which consists in plastic deformation with passive dissolution, but the addition of fluorides to the acidified solution changes the degradation mechanism towards active dissolution of the titanium alloys. es_ES
dc.description.sponsorship We wish to express our gratitude to the Ministerio de Ciencia e Innovacion of the Spanish government for the financial support under the project MAT2011-22481. en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Journal of Physics D: Applied Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Tribocorrosion es_ES
dc.subject Ti6Al4V es_ES
dc.subject Biomaterial es_ES
dc.subject Saliva es_ES
dc.subject PH es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0022-3727/46/40/404003
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2011-22481/ES/ESTUDIO DE PROPIEDADES FISICO-QUIMICAS DE INTERFASE BIOMATERIAL/SUERO FISIOLOGICO PARA DETERMINAR MECANISMOS DE DEGRADACION TRIBO-ELECTROQUIMICOS DE ALEACIONES BIOMEDICAS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Licausi, M.; Igual Muñoz, AN.; Amigó Borrás, V. (2013). Tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs. Journal of Physics D: Applied Physics. 46(40):404003-404013. https://doi.org/10.1088/0022-3727/46/40/404003 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/0022-3727/46/40/404003 es_ES
dc.description.upvformatpinicio 404003 es_ES
dc.description.upvformatpfin 404013 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 46 es_ES
dc.description.issue 40 es_ES
dc.relation.senia 258609
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Bianco, P. D., Ducheyne, P., & Cuckler, J. M. (1996). Titanium serum and urine levels in rabbits with a titanium implant in the absence of wear. Biomaterials, 17(20), 1937-1942. doi:10.1016/0142-9612(96)00023-3 es_ES
dc.description.references Steinberg, D., Klinger, A., Kohavi, D., & Sela, M. N. (1995). Adsorption of human salivary proteins to titanium powder. I. Adsorption of human salivary albumin. Biomaterials, 16(17), 1339-1343. doi:10.1016/0142-9612(95)91050-9 es_ES
dc.description.references Cai, Z., Nakajima, H., Woldu, M., Berglund, A., Bergman, M., & Okabe, T. (1999). In vitro corrosion resistance of titanium made using different fabrication methods. Biomaterials, 20(2), 183-190. doi:10.1016/s0142-9612(98)00160-4 es_ES
dc.description.references Khan, M. A., Williams, R. L., & Williams, D. F. (1996). In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials, 17(22), 2117-2126. doi:10.1016/0142-9612(96)00029-4 es_ES
dc.description.references Koike, M., & Fujii, H. (2001). The corrosion resistance of pure titanium in organic acids. Biomaterials, 22(21), 2931-2936. doi:10.1016/s0142-9612(01)00040-0 es_ES
dc.description.references IDA, K., TANI, Y., TSUTSUMI, S., TOGAYA, T., NAMBU, T., SUESE, K., … WADA, H. (1985). Clinical Application of Pure Titanium Crowns. Dental Materials Journal, 4(2), 191-195,277. doi:10.4012/dmj.4.191 es_ES
dc.description.references Bergman, B., Bessing, C., Ericson, G., Lundquist, P., Nilson, H., & Andersson, M. (1990). A 2-year follow-up study of titanium crowns. Acta Odontologica Scandinavica, 48(2), 113-117. doi:10.3109/00016359009005866 es_ES
dc.description.references Hirata, T., Nakamura, T., Takashima, F., Maruyama, T., Taira, M., & Takahashi, J. (2001). Studies on polishing of Ti and Ag-Pd-Cu-Au alloy with five dental abrasives. Journal of Oral Rehabilitation, 28(8), 773-777. doi:10.1046/j.1365-2842.2001.00737.x es_ES
dc.description.references Iijima, D. (2003). Wear properties of Ti and Ti–6Al–7Nb castings for dental prostheses. Biomaterials, 24(8), 1519-1524. doi:10.1016/s0142-9612(02)00533-1 es_ES
dc.description.references Lucas, L., Lemons, J., Lee, J., & Dale, P. (s. f.). Quantitative Characterization and Performance of Porous Implants for Hard Tissue Applications, 124-124-13. doi:10.1520/stp25226s es_ES
dc.description.references Bundy, K., & Luedemann, R. (s. f.). Characterization of the Corrosion Behavior of Porous Biomaterials by A-C Impedance Techniques. Quantitative Characterization and Performance of Porous Implants for Hard Tissue Applications, 137-137-14. doi:10.1520/stp25227s es_ES
dc.description.references Marino, C. E. B., & Mascaro, L. H. (2004). EIS characterization of a Ti-dental implant in artificial saliva media: dissolution process of the oxide barrier. Journal of Electroanalytical Chemistry, 568, 115-120. doi:10.1016/j.jelechem.2004.01.011 es_ES
dc.description.references Hodgson, A. W. E., Mueller, Y., Forster, D., & Virtanen, S. (2002). Electrochemical characterisation of passive films on Ti alloys under simulated biological conditions. Electrochimica Acta, 47(12), 1913-1923. doi:10.1016/s0013-4686(02)00029-4 es_ES
dc.description.references Shukla, A. K., Balasubramaniam, R., & Bhargava, S. (2005). Properties of passive film formed on CP titanium, Ti–6Al–4V and Ti–13.4Al–29Nb alloys in simulated human body conditions. Intermetallics, 13(6), 631-637. doi:10.1016/j.intermet.2004.10.001 es_ES
dc.description.references Vieira, A. C., Ribeiro, A. R., Rocha, L. A., & Celis, J. P. (2006). Influence of pH and corrosion inhibitors on the tribocorrosion of titanium in artificial saliva. Wear, 261(9), 994-1001. doi:10.1016/j.wear.2006.03.031 es_ES
dc.description.references Schmidt, H., Stechemesser, G., Witte, J., & Soltani-farshi, M. (1998). Depth distributions and anodic polarization behaviour of ion implanted Ti6Al4V. Corrosion Science, 40(9), 1533-1545. doi:10.1016/s0010-938x(98)00062-6 es_ES
dc.description.references Cai, Z., Shafer, T., Watanabe, I., Nunn, M. E., & Okabe, T. (2003). Electrochemical characterization of cast titanium alloys. Biomaterials, 24(2), 213-218. doi:10.1016/s0142-9612(02)00293-4 es_ES
dc.description.references Thair, L., Kamachi Mudali, U., Rajagopalan, S., Asokamani, R., & Raj, B. (2003). Surface characterization of passive film formed on nitrogen ion implanted Ti–6Al–4V and Ti–6Al–7Nb alloys using SIMS. Corrosion Science, 45(9), 1951-1967. doi:10.1016/s0010-938x(03)00027-1 es_ES
dc.description.references Hanawa, T., & Ota, M. (1992). Characterization of surface film formed on titanium in electrolyte using XPS. Applied Surface Science, 55(4), 269-276. doi:10.1016/0169-4332(92)90178-z es_ES
dc.description.references LIU, X., CHU, P., & DING, C. (2004). Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 47(3-4), 49-121. doi:10.1016/j.mser.2004.11.001 es_ES
dc.description.references Jones, F. (2001). Teeth and bones: applications of surface science to dental materials and related biomaterials. Surface Science Reports, 42(3-5), 75-205. doi:10.1016/s0167-5729(00)00011-x es_ES
dc.description.references Featherstone, J. D. B., & Rodgers, B. E. (1981). Effect of Acetic, Lactic and other Organic Acids on the Formation of Artificial Carious Lesions. Caries Research, 15(5), 377-385. doi:10.1159/000260541 es_ES
dc.description.references Nakagawa, M., Matono, Y., Matsuya, S., Udoh, K., & Ishikawa, K. (2005). The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in fluoride-containing environments. Biomaterials, 26(15), 2239-2246. doi:10.1016/j.biomaterials.2004.07.022 es_ES
dc.description.references Nakagawa, M., Matsuya, S., Shiraishi, T., & Ohta, M. (1999). Effect of Fluoride Concentration and pH on Corrosion Behavior of Titanium for Dental Use. Journal of Dental Research, 78(9), 1568-1572. doi:10.1177/00220345990780091201 es_ES
dc.description.references Hoeppner, D. W., & Chandrasekaran, V. (1994). Fretting in orthopaedic implants: A review. Wear, 173(1-2), 189-197. doi:10.1016/0043-1648(94)90272-0 es_ES
dc.description.references Barril, S., Debaud, N., Mischler, S., & Landolt, D. (2002). A tribo-electrochemical apparatus for in vitro investigation of fretting–corrosion of metallic implant materials. Wear, 252(9-10), 744-754. doi:10.1016/s0043-1648(02)00027-3 es_ES
dc.description.references Diomidis, N., Celis, J.-P., Ponthiaux, P., & Wenger, F. (2010). Tribocorrosion of stainless steel in sulfuric acid: Identification of corrosion–wear components and effect of contact area. Wear, 269(1-2), 93-103. doi:10.1016/j.wear.2010.03.010 es_ES
dc.description.references Diomidis, N., Mischler, S., More, N. S., Roy, M., & Paul, S. N. (2011). Fretting-corrosion behavior of β titanium alloys in simulated synovial fluid. Wear, 271(7-8), 1093-1102. doi:10.1016/j.wear.2011.05.010 es_ES
dc.description.references Bazzoni, A., Mischler, S., & Espallargas, N. (2012). Tribocorrosion of Pulsed Plasma-Nitrided CoCrMo Implant Alloy. Tribology Letters, 49(1), 157-167. doi:10.1007/s11249-012-0047-0 es_ES
dc.description.references Vieira, A. C., Rocha, L. A., Papageorgiou, N., & Mischler, S. (2012). Mechanical and electrochemical deterioration mechanisms in the tribocorrosion of Al alloys in NaCl and in NaNO3 solutions. Corrosion Science, 54, 26-35. doi:10.1016/j.corsci.2011.08.041 es_ES
dc.description.references Kwon, Y. H., Seol, H.-J., Kim, H.-I., Hwang, K.-J., Lee, S.-G., & Kim, K.-H. (2005). Effect of acidic fluoride solution on ? titanium alloy wire. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 73B(2), 285-290. doi:10.1002/jbm.b.30212 es_ES
dc.description.references Buchanan, R. A., Rigney, E. D., & Williams, J. M. (1987). Wear-accelerated corrosion of Ti-6Al-4V and nitrogen-ion-implanted Ti-6Al-4V: Mechanisms and influence of fixed-stress magnitude. Journal of Biomedical Materials Research, 21(3), 367-377. doi:10.1002/jbm.820210309 es_ES
dc.description.references Barril, S., Mischler, S., & Landolt, D. (2005). Electrochemical effects on the fretting corrosion behaviour of Ti6Al4V in 0.9% sodium chloride solution. Wear, 259(1-6), 282-291. doi:10.1016/j.wear.2004.12.012 es_ES
dc.description.references Landolt, D., Mischler, S., Stemp, M., & Barril, S. (2004). Third body effects and material fluxes in tribocorrosion systems involving a sliding contact. Wear, 256(5), 517-524. doi:10.1016/s0043-1648(03)00561-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem