Mostrar el registro sencillo del ítem
dc.contributor.author | LICAUSI, MARIE-PIERRE | es_ES |
dc.contributor.author | Igual Muñoz, Anna Neus | es_ES |
dc.contributor.author | Amigó Borrás, Vicente | es_ES |
dc.date.accessioned | 2014-09-26T13:59:28Z | |
dc.date.available | 2014-09-26T13:59:28Z | |
dc.date.issued | 2013-09-19 | |
dc.identifier.issn | 0022-3727 | |
dc.identifier.uri | http://hdl.handle.net/10251/40328 | |
dc.description.abstract | Titanium and its alloys has been widely used for the design of dental implants because of its biocompatibility, mechanical properties and corrosion resistance. The powder-metallurgy process is a promising alternative to the casting fabrication process of titanium alloys for bone implants design as the porous structure mimics the natural bone structures, allowing the bone to grow into the pores which results in a better fixation of the artificial implant. However, under in vivo conditions the implants are subjected to tribocorrosion phenomenon, which consists in the degradation mechanisms due to the combined effect of wear and corrosion. The aim of this study is to evaluate the tribocorrosion behaviour of cast and sintered Ti6Al4V biomedical alloy for dental applications using the cast material as reference. Titanium samples were tested in artificial human saliva solution with three different pHs (3, 6, 9) and in an acidic saliva with 1000 ppm fluorides (AS-3-1000F−) by different electrochemical techniques (potentiodynamic curves, potentiostatic tests and tribo-electrochemical tests). Cast and sintered titanium alloys exhibit the same tribocorrosion mechanisms in AS independently of the pH which consists in plastic deformation with passive dissolution, but the addition of fluorides to the acidified solution changes the degradation mechanism towards active dissolution of the titanium alloys. | es_ES |
dc.description.sponsorship | We wish to express our gratitude to the Ministerio de Ciencia e Innovacion of the Spanish government for the financial support under the project MAT2011-22481. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing: Hybrid Open Access | es_ES |
dc.relation.ispartof | Journal of Physics D: Applied Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Tribocorrosion | es_ES |
dc.subject | Ti6Al4V | es_ES |
dc.subject | Biomaterial | es_ES |
dc.subject | Saliva | es_ES |
dc.subject | PH | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/0022-3727/46/40/404003 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2011-22481/ES/ESTUDIO DE PROPIEDADES FISICO-QUIMICAS DE INTERFASE BIOMATERIAL/SUERO FISIOLOGICO PARA DETERMINAR MECANISMOS DE DEGRADACION TRIBO-ELECTROQUIMICOS DE ALEACIONES BIOMEDICAS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Licausi, M.; Igual Muñoz, AN.; Amigó Borrás, V. (2013). Tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs. Journal of Physics D: Applied Physics. 46(40):404003-404013. https://doi.org/10.1088/0022-3727/46/40/404003 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1088/0022-3727/46/40/404003 | es_ES |
dc.description.upvformatpinicio | 404003 | es_ES |
dc.description.upvformatpfin | 404013 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 46 | es_ES |
dc.description.issue | 40 | es_ES |
dc.relation.senia | 258609 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Bianco, P. D., Ducheyne, P., & Cuckler, J. M. (1996). Titanium serum and urine levels in rabbits with a titanium implant in the absence of wear. Biomaterials, 17(20), 1937-1942. doi:10.1016/0142-9612(96)00023-3 | es_ES |
dc.description.references | Steinberg, D., Klinger, A., Kohavi, D., & Sela, M. N. (1995). Adsorption of human salivary proteins to titanium powder. I. Adsorption of human salivary albumin. Biomaterials, 16(17), 1339-1343. doi:10.1016/0142-9612(95)91050-9 | es_ES |
dc.description.references | Cai, Z., Nakajima, H., Woldu, M., Berglund, A., Bergman, M., & Okabe, T. (1999). In vitro corrosion resistance of titanium made using different fabrication methods. Biomaterials, 20(2), 183-190. doi:10.1016/s0142-9612(98)00160-4 | es_ES |
dc.description.references | Khan, M. A., Williams, R. L., & Williams, D. F. (1996). In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials, 17(22), 2117-2126. doi:10.1016/0142-9612(96)00029-4 | es_ES |
dc.description.references | Koike, M., & Fujii, H. (2001). The corrosion resistance of pure titanium in organic acids. Biomaterials, 22(21), 2931-2936. doi:10.1016/s0142-9612(01)00040-0 | es_ES |
dc.description.references | IDA, K., TANI, Y., TSUTSUMI, S., TOGAYA, T., NAMBU, T., SUESE, K., … WADA, H. (1985). Clinical Application of Pure Titanium Crowns. Dental Materials Journal, 4(2), 191-195,277. doi:10.4012/dmj.4.191 | es_ES |
dc.description.references | Bergman, B., Bessing, C., Ericson, G., Lundquist, P., Nilson, H., & Andersson, M. (1990). A 2-year follow-up study of titanium crowns. Acta Odontologica Scandinavica, 48(2), 113-117. doi:10.3109/00016359009005866 | es_ES |
dc.description.references | Hirata, T., Nakamura, T., Takashima, F., Maruyama, T., Taira, M., & Takahashi, J. (2001). Studies on polishing of Ti and Ag-Pd-Cu-Au alloy with five dental abrasives. Journal of Oral Rehabilitation, 28(8), 773-777. doi:10.1046/j.1365-2842.2001.00737.x | es_ES |
dc.description.references | Iijima, D. (2003). Wear properties of Ti and Ti–6Al–7Nb castings for dental prostheses. Biomaterials, 24(8), 1519-1524. doi:10.1016/s0142-9612(02)00533-1 | es_ES |
dc.description.references | Lucas, L., Lemons, J., Lee, J., & Dale, P. (s. f.). Quantitative Characterization and Performance of Porous Implants for Hard Tissue Applications, 124-124-13. doi:10.1520/stp25226s | es_ES |
dc.description.references | Bundy, K., & Luedemann, R. (s. f.). Characterization of the Corrosion Behavior of Porous Biomaterials by A-C Impedance Techniques. Quantitative Characterization and Performance of Porous Implants for Hard Tissue Applications, 137-137-14. doi:10.1520/stp25227s | es_ES |
dc.description.references | Marino, C. E. B., & Mascaro, L. H. (2004). EIS characterization of a Ti-dental implant in artificial saliva media: dissolution process of the oxide barrier. Journal of Electroanalytical Chemistry, 568, 115-120. doi:10.1016/j.jelechem.2004.01.011 | es_ES |
dc.description.references | Hodgson, A. W. E., Mueller, Y., Forster, D., & Virtanen, S. (2002). Electrochemical characterisation of passive films on Ti alloys under simulated biological conditions. Electrochimica Acta, 47(12), 1913-1923. doi:10.1016/s0013-4686(02)00029-4 | es_ES |
dc.description.references | Shukla, A. K., Balasubramaniam, R., & Bhargava, S. (2005). Properties of passive film formed on CP titanium, Ti–6Al–4V and Ti–13.4Al–29Nb alloys in simulated human body conditions. Intermetallics, 13(6), 631-637. doi:10.1016/j.intermet.2004.10.001 | es_ES |
dc.description.references | Vieira, A. C., Ribeiro, A. R., Rocha, L. A., & Celis, J. P. (2006). Influence of pH and corrosion inhibitors on the tribocorrosion of titanium in artificial saliva. Wear, 261(9), 994-1001. doi:10.1016/j.wear.2006.03.031 | es_ES |
dc.description.references | Schmidt, H., Stechemesser, G., Witte, J., & Soltani-farshi, M. (1998). Depth distributions and anodic polarization behaviour of ion implanted Ti6Al4V. Corrosion Science, 40(9), 1533-1545. doi:10.1016/s0010-938x(98)00062-6 | es_ES |
dc.description.references | Cai, Z., Shafer, T., Watanabe, I., Nunn, M. E., & Okabe, T. (2003). Electrochemical characterization of cast titanium alloys. Biomaterials, 24(2), 213-218. doi:10.1016/s0142-9612(02)00293-4 | es_ES |
dc.description.references | Thair, L., Kamachi Mudali, U., Rajagopalan, S., Asokamani, R., & Raj, B. (2003). Surface characterization of passive film formed on nitrogen ion implanted Ti–6Al–4V and Ti–6Al–7Nb alloys using SIMS. Corrosion Science, 45(9), 1951-1967. doi:10.1016/s0010-938x(03)00027-1 | es_ES |
dc.description.references | Hanawa, T., & Ota, M. (1992). Characterization of surface film formed on titanium in electrolyte using XPS. Applied Surface Science, 55(4), 269-276. doi:10.1016/0169-4332(92)90178-z | es_ES |
dc.description.references | LIU, X., CHU, P., & DING, C. (2004). Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 47(3-4), 49-121. doi:10.1016/j.mser.2004.11.001 | es_ES |
dc.description.references | Jones, F. (2001). Teeth and bones: applications of surface science to dental materials and related biomaterials. Surface Science Reports, 42(3-5), 75-205. doi:10.1016/s0167-5729(00)00011-x | es_ES |
dc.description.references | Featherstone, J. D. B., & Rodgers, B. E. (1981). Effect of Acetic, Lactic and other Organic Acids on the Formation of Artificial Carious Lesions. Caries Research, 15(5), 377-385. doi:10.1159/000260541 | es_ES |
dc.description.references | Nakagawa, M., Matono, Y., Matsuya, S., Udoh, K., & Ishikawa, K. (2005). The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in fluoride-containing environments. Biomaterials, 26(15), 2239-2246. doi:10.1016/j.biomaterials.2004.07.022 | es_ES |
dc.description.references | Nakagawa, M., Matsuya, S., Shiraishi, T., & Ohta, M. (1999). Effect of Fluoride Concentration and pH on Corrosion Behavior of Titanium for Dental Use. Journal of Dental Research, 78(9), 1568-1572. doi:10.1177/00220345990780091201 | es_ES |
dc.description.references | Hoeppner, D. W., & Chandrasekaran, V. (1994). Fretting in orthopaedic implants: A review. Wear, 173(1-2), 189-197. doi:10.1016/0043-1648(94)90272-0 | es_ES |
dc.description.references | Barril, S., Debaud, N., Mischler, S., & Landolt, D. (2002). A tribo-electrochemical apparatus for in vitro investigation of fretting–corrosion of metallic implant materials. Wear, 252(9-10), 744-754. doi:10.1016/s0043-1648(02)00027-3 | es_ES |
dc.description.references | Diomidis, N., Celis, J.-P., Ponthiaux, P., & Wenger, F. (2010). Tribocorrosion of stainless steel in sulfuric acid: Identification of corrosion–wear components and effect of contact area. Wear, 269(1-2), 93-103. doi:10.1016/j.wear.2010.03.010 | es_ES |
dc.description.references | Diomidis, N., Mischler, S., More, N. S., Roy, M., & Paul, S. N. (2011). Fretting-corrosion behavior of β titanium alloys in simulated synovial fluid. Wear, 271(7-8), 1093-1102. doi:10.1016/j.wear.2011.05.010 | es_ES |
dc.description.references | Bazzoni, A., Mischler, S., & Espallargas, N. (2012). Tribocorrosion of Pulsed Plasma-Nitrided CoCrMo Implant Alloy. Tribology Letters, 49(1), 157-167. doi:10.1007/s11249-012-0047-0 | es_ES |
dc.description.references | Vieira, A. C., Rocha, L. A., Papageorgiou, N., & Mischler, S. (2012). Mechanical and electrochemical deterioration mechanisms in the tribocorrosion of Al alloys in NaCl and in NaNO3 solutions. Corrosion Science, 54, 26-35. doi:10.1016/j.corsci.2011.08.041 | es_ES |
dc.description.references | Kwon, Y. H., Seol, H.-J., Kim, H.-I., Hwang, K.-J., Lee, S.-G., & Kim, K.-H. (2005). Effect of acidic fluoride solution on ? titanium alloy wire. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 73B(2), 285-290. doi:10.1002/jbm.b.30212 | es_ES |
dc.description.references | Buchanan, R. A., Rigney, E. D., & Williams, J. M. (1987). Wear-accelerated corrosion of Ti-6Al-4V and nitrogen-ion-implanted Ti-6Al-4V: Mechanisms and influence of fixed-stress magnitude. Journal of Biomedical Materials Research, 21(3), 367-377. doi:10.1002/jbm.820210309 | es_ES |
dc.description.references | Barril, S., Mischler, S., & Landolt, D. (2005). Electrochemical effects on the fretting corrosion behaviour of Ti6Al4V in 0.9% sodium chloride solution. Wear, 259(1-6), 282-291. doi:10.1016/j.wear.2004.12.012 | es_ES |
dc.description.references | Landolt, D., Mischler, S., Stemp, M., & Barril, S. (2004). Third body effects and material fluxes in tribocorrosion systems involving a sliding contact. Wear, 256(5), 517-524. doi:10.1016/s0043-1648(03)00561-1 | es_ES |