- -

Tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs

Mostrar el registro completo del ítem

Licausi, M.; Igual Muñoz, AN.; Amigó Borrás, V. (2013). Tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs. Journal of Physics D: Applied Physics. 46(40):404003-404013. https://doi.org/10.1088/0022-3727/46/40/404003

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/40328

Ficheros en el ítem

Metadatos del ítem

Título: Tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs
Autor: LICAUSI, MARIE-PIERRE Igual Muñoz, Anna Neus Amigó Borrás, Vicente
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
Titanium and its alloys has been widely used for the design of dental implants because of its biocompatibility, mechanical properties and corrosion resistance. The powder-metallurgy process is a promising alternative to ...[+]
Palabras clave: Tribocorrosion , Ti6Al4V , Biomaterial , Saliva , PH
Derechos de uso: Cerrado
Fuente:
Journal of Physics D: Applied Physics. (issn: 0022-3727 )
DOI: 10.1088/0022-3727/46/40/404003
Editorial:
IOP Publishing: Hybrid Open Access
Versión del editor: http://dx.doi.org/10.1088/0022-3727/46/40/404003
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2011-22481/ES/ESTUDIO DE PROPIEDADES FISICO-QUIMICAS DE INTERFASE BIOMATERIAL/SUERO FISIOLOGICO PARA DETERMINAR MECANISMOS DE DEGRADACION TRIBO-ELECTROQUIMICOS DE ALEACIONES BIOMEDICAS/
Agradecimientos:
We wish to express our gratitude to the Ministerio de Ciencia e Innovacion of the Spanish government for the financial support under the project MAT2011-22481.
Tipo: Artículo

References

Bianco, P. D., Ducheyne, P., & Cuckler, J. M. (1996). Titanium serum and urine levels in rabbits with a titanium implant in the absence of wear. Biomaterials, 17(20), 1937-1942. doi:10.1016/0142-9612(96)00023-3

Steinberg, D., Klinger, A., Kohavi, D., & Sela, M. N. (1995). Adsorption of human salivary proteins to titanium powder. I. Adsorption of human salivary albumin. Biomaterials, 16(17), 1339-1343. doi:10.1016/0142-9612(95)91050-9

Cai, Z., Nakajima, H., Woldu, M., Berglund, A., Bergman, M., & Okabe, T. (1999). In vitro corrosion resistance of titanium made using different fabrication methods. Biomaterials, 20(2), 183-190. doi:10.1016/s0142-9612(98)00160-4 [+]
Bianco, P. D., Ducheyne, P., & Cuckler, J. M. (1996). Titanium serum and urine levels in rabbits with a titanium implant in the absence of wear. Biomaterials, 17(20), 1937-1942. doi:10.1016/0142-9612(96)00023-3

Steinberg, D., Klinger, A., Kohavi, D., & Sela, M. N. (1995). Adsorption of human salivary proteins to titanium powder. I. Adsorption of human salivary albumin. Biomaterials, 16(17), 1339-1343. doi:10.1016/0142-9612(95)91050-9

Cai, Z., Nakajima, H., Woldu, M., Berglund, A., Bergman, M., & Okabe, T. (1999). In vitro corrosion resistance of titanium made using different fabrication methods. Biomaterials, 20(2), 183-190. doi:10.1016/s0142-9612(98)00160-4

Khan, M. A., Williams, R. L., & Williams, D. F. (1996). In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials, 17(22), 2117-2126. doi:10.1016/0142-9612(96)00029-4

Koike, M., & Fujii, H. (2001). The corrosion resistance of pure titanium in organic acids. Biomaterials, 22(21), 2931-2936. doi:10.1016/s0142-9612(01)00040-0

IDA, K., TANI, Y., TSUTSUMI, S., TOGAYA, T., NAMBU, T., SUESE, K., … WADA, H. (1985). Clinical Application of Pure Titanium Crowns. Dental Materials Journal, 4(2), 191-195,277. doi:10.4012/dmj.4.191

Bergman, B., Bessing, C., Ericson, G., Lundquist, P., Nilson, H., & Andersson, M. (1990). A 2-year follow-up study of titanium crowns. Acta Odontologica Scandinavica, 48(2), 113-117. doi:10.3109/00016359009005866

Hirata, T., Nakamura, T., Takashima, F., Maruyama, T., Taira, M., & Takahashi, J. (2001). Studies on polishing of Ti and Ag-Pd-Cu-Au alloy with five dental abrasives. Journal of Oral Rehabilitation, 28(8), 773-777. doi:10.1046/j.1365-2842.2001.00737.x

Iijima, D. (2003). Wear properties of Ti and Ti–6Al–7Nb castings for dental prostheses. Biomaterials, 24(8), 1519-1524. doi:10.1016/s0142-9612(02)00533-1

Lucas, L., Lemons, J., Lee, J., & Dale, P. (s. f.). Quantitative Characterization and Performance of Porous Implants for Hard Tissue Applications, 124-124-13. doi:10.1520/stp25226s

Bundy, K., & Luedemann, R. (s. f.). Characterization of the Corrosion Behavior of Porous Biomaterials by A-C Impedance Techniques. Quantitative Characterization and Performance of Porous Implants for Hard Tissue Applications, 137-137-14. doi:10.1520/stp25227s

Marino, C. E. B., & Mascaro, L. H. (2004). EIS characterization of a Ti-dental implant in artificial saliva media: dissolution process of the oxide barrier. Journal of Electroanalytical Chemistry, 568, 115-120. doi:10.1016/j.jelechem.2004.01.011

Hodgson, A. W. E., Mueller, Y., Forster, D., & Virtanen, S. (2002). Electrochemical characterisation of passive films on Ti alloys under simulated biological conditions. Electrochimica Acta, 47(12), 1913-1923. doi:10.1016/s0013-4686(02)00029-4

Shukla, A. K., Balasubramaniam, R., & Bhargava, S. (2005). Properties of passive film formed on CP titanium, Ti–6Al–4V and Ti–13.4Al–29Nb alloys in simulated human body conditions. Intermetallics, 13(6), 631-637. doi:10.1016/j.intermet.2004.10.001

Vieira, A. C., Ribeiro, A. R., Rocha, L. A., & Celis, J. P. (2006). Influence of pH and corrosion inhibitors on the tribocorrosion of titanium in artificial saliva. Wear, 261(9), 994-1001. doi:10.1016/j.wear.2006.03.031

Schmidt, H., Stechemesser, G., Witte, J., & Soltani-farshi, M. (1998). Depth distributions and anodic polarization behaviour of ion implanted Ti6Al4V. Corrosion Science, 40(9), 1533-1545. doi:10.1016/s0010-938x(98)00062-6

Cai, Z., Shafer, T., Watanabe, I., Nunn, M. E., & Okabe, T. (2003). Electrochemical characterization of cast titanium alloys. Biomaterials, 24(2), 213-218. doi:10.1016/s0142-9612(02)00293-4

Thair, L., Kamachi Mudali, U., Rajagopalan, S., Asokamani, R., & Raj, B. (2003). Surface characterization of passive film formed on nitrogen ion implanted Ti–6Al–4V and Ti–6Al–7Nb alloys using SIMS. Corrosion Science, 45(9), 1951-1967. doi:10.1016/s0010-938x(03)00027-1

Hanawa, T., & Ota, M. (1992). Characterization of surface film formed on titanium in electrolyte using XPS. Applied Surface Science, 55(4), 269-276. doi:10.1016/0169-4332(92)90178-z

LIU, X., CHU, P., & DING, C. (2004). Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 47(3-4), 49-121. doi:10.1016/j.mser.2004.11.001

Jones, F. (2001). Teeth and bones: applications of surface science to dental materials and related biomaterials. Surface Science Reports, 42(3-5), 75-205. doi:10.1016/s0167-5729(00)00011-x

Featherstone, J. D. B., & Rodgers, B. E. (1981). Effect of Acetic, Lactic and other Organic Acids on the Formation of Artificial Carious Lesions. Caries Research, 15(5), 377-385. doi:10.1159/000260541

Nakagawa, M., Matono, Y., Matsuya, S., Udoh, K., & Ishikawa, K. (2005). The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in fluoride-containing environments. Biomaterials, 26(15), 2239-2246. doi:10.1016/j.biomaterials.2004.07.022

Nakagawa, M., Matsuya, S., Shiraishi, T., & Ohta, M. (1999). Effect of Fluoride Concentration and pH on Corrosion Behavior of Titanium for Dental Use. Journal of Dental Research, 78(9), 1568-1572. doi:10.1177/00220345990780091201

Hoeppner, D. W., & Chandrasekaran, V. (1994). Fretting in orthopaedic implants: A review. Wear, 173(1-2), 189-197. doi:10.1016/0043-1648(94)90272-0

Barril, S., Debaud, N., Mischler, S., & Landolt, D. (2002). A tribo-electrochemical apparatus for in vitro investigation of fretting–corrosion of metallic implant materials. Wear, 252(9-10), 744-754. doi:10.1016/s0043-1648(02)00027-3

Diomidis, N., Celis, J.-P., Ponthiaux, P., & Wenger, F. (2010). Tribocorrosion of stainless steel in sulfuric acid: Identification of corrosion–wear components and effect of contact area. Wear, 269(1-2), 93-103. doi:10.1016/j.wear.2010.03.010

Diomidis, N., Mischler, S., More, N. S., Roy, M., & Paul, S. N. (2011). Fretting-corrosion behavior of β titanium alloys in simulated synovial fluid. Wear, 271(7-8), 1093-1102. doi:10.1016/j.wear.2011.05.010

Bazzoni, A., Mischler, S., & Espallargas, N. (2012). Tribocorrosion of Pulsed Plasma-Nitrided CoCrMo Implant Alloy. Tribology Letters, 49(1), 157-167. doi:10.1007/s11249-012-0047-0

Vieira, A. C., Rocha, L. A., Papageorgiou, N., & Mischler, S. (2012). Mechanical and electrochemical deterioration mechanisms in the tribocorrosion of Al alloys in NaCl and in NaNO3 solutions. Corrosion Science, 54, 26-35. doi:10.1016/j.corsci.2011.08.041

Kwon, Y. H., Seol, H.-J., Kim, H.-I., Hwang, K.-J., Lee, S.-G., & Kim, K.-H. (2005). Effect of acidic fluoride solution on ? titanium alloy wire. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 73B(2), 285-290. doi:10.1002/jbm.b.30212

Buchanan, R. A., Rigney, E. D., & Williams, J. M. (1987). Wear-accelerated corrosion of Ti-6Al-4V and nitrogen-ion-implanted Ti-6Al-4V: Mechanisms and influence of fixed-stress magnitude. Journal of Biomedical Materials Research, 21(3), 367-377. doi:10.1002/jbm.820210309

Barril, S., Mischler, S., & Landolt, D. (2005). Electrochemical effects on the fretting corrosion behaviour of Ti6Al4V in 0.9% sodium chloride solution. Wear, 259(1-6), 282-291. doi:10.1016/j.wear.2004.12.012

Landolt, D., Mischler, S., Stemp, M., & Barril, S. (2004). Third body effects and material fluxes in tribocorrosion systems involving a sliding contact. Wear, 256(5), 517-524. doi:10.1016/s0043-1648(03)00561-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem